Comparison of Conventional, Revascularized, and Bioengineered Methods of Recurrent Laryngeal Nerve Reconstruction | Laryngology | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Siemionow  M, Brzezicki  G.  Chapter 8: current techniques and concepts in peripheral nerve repair.  Int Rev Neurobiol. 2009;87:141-172.PubMedGoogle Scholar
2.
Burnett  MG, Zager  EL.  Pathophysiology of peripheral nerve injury: a brief review.  Neurosurg Focus. 2004;16(5):E1.PubMedGoogle ScholarCrossref
3.
Schmidt  CE, Leach  JB.  Neural tissue engineering: strategies for repair and regeneration.  Annu Rev Biomed Eng. 2003;5:293-347.PubMedGoogle ScholarCrossref
4.
Millesi  H.  Reappraisal of nerve repair.  Surg Clin North Am. 1981;61(2):321-340.PubMedGoogle Scholar
5.
Terzis  J, Faibisoff  B, Williams  B.  The nerve gap: suture under tension vs graft.  Plast Reconstr Surg. 1975;56(2):166-170.PubMedGoogle ScholarCrossref
6.
Lux  P, Breidenbach  W, Firrell  J.  Determination of temporal changes in blood flow in vascularized and nonvascularized nerve grafts in the dog.  Plast Reconstr Surg. 1988;82(1):133-144.PubMedGoogle ScholarCrossref
7.
Terzis  JK, Kostopoulos  VK.  Vascularized ulnar nerve graft: 151 reconstructions for posttraumatic brachial plexus palsy.  Plast Reconstr Surg. 2009;123(4):1276-1291.PubMedGoogle ScholarCrossref
8.
Paniello  RC, Park  A.  Effect on laryngeal adductor function of vincristine block of posterior cricoarytenoid muscle 3 to 5 months after recurrent laryngeal nerve injury.  Ann Otol Rhinol Laryngol. 2015;124(6):484-489.PubMedGoogle ScholarCrossref
9.
Chou  FF, Su  CY, Jeng  SF, Hsu  KL, Lu  KY.  Neurorrhaphy of the recurrent laryngeal nerve.  J Am Coll Surg. 2003;197(1):52-57.PubMedGoogle ScholarCrossref
10.
Li  M, Liu  F, Shi  S, Chen  S, Chen  D, Zheng  H.  Bridging gaps between the recurrent laryngeal nerve and ansa cervicalis using autologous nerve grafts.  J Voice. 2013;27(3):381-387.PubMedGoogle ScholarCrossref
11.
Yoo  YM, Lee  IJ, Lim  H, Kim  JH, Park  MC.  Vein wrapping technique for nerve reconstruction in patients with thyroid cancer invading the recurrent laryngeal nerve.  Arch Plast Surg. 2012;39(1):71-75.PubMedGoogle ScholarCrossref
12.
Yumoto  E, Sanuki  T, Kumai  Y.  Immediate recurrent laryngeal nerve reconstruction and vocal outcome.  Laryngoscope. 2006;116(9):1657-1661.PubMedGoogle ScholarCrossref
13.
Rosson  GD, Williams  EH, Dellon  AL.  Motor nerve regeneration across a conduit.  Microsurgery. 2009;29(2):107-114.PubMedGoogle ScholarCrossref
14.
Navissano  M, Malan  F, Carnino  R, Battiston  B.  Neurotube for facial nerve repair.  Microsurgery. 2005;25(4):268-271.PubMedGoogle ScholarCrossref
15.
Wood  MD, Moore  AM, Hunter  DA,  et al.  Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration.  Acta Biomater. 2009;5(4):959-968.PubMedGoogle ScholarCrossref
16.
Wood  MD, Hunter  D, Mackinnon  SE, Sakiyama-Elbert  SE.  Heparin-binding-affinity-based delivery systems releasing nerve growth factor enhance sciatic nerve regeneration.  J Biomater Sci Polym Ed. 2010;21(6-7):771-787.PubMedGoogle ScholarCrossref
17.
Szynkaruk  M, Kemp  SW, Wood  MD, Gordon  T, Borschel  GH.  Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction.  Tissue Eng Part B Rev. 2013;19(1):83-96.PubMedGoogle ScholarCrossref
18.
Brooks  DN, Weber  RV, Chao  JD,  et al.  Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions.  Microsurgery. 2012;32(1):1-14.PubMedGoogle ScholarCrossref
19.
Kimata  Y, Sakuraba  M, Hishinuma  S, Ebihara  S, Hayashi  R, Asakage  T.  Free vascularized nerve grafting for immediate facial nerve reconstruction.  Laryngoscope. 2005;115(2):331-336.PubMedGoogle ScholarCrossref
20.
Kashiwa  K, Kobayashi  S, Nasu  W, Kuroda  T, Higuchi  H.  Facial nerve reconstruction using a vascularized lateral femoral cutaneous nerve graft based on the superficial circumflex iliac artery system: an application of the inferolateral extension of the groin flap.  J Reconstr Microsurg. 2010;26(9):577-582.PubMedGoogle ScholarCrossref
21.
Paniello  RC, Rich  JT, Debnath  NL.  Laryngeal adductor function in experimental models of recurrent laryngeal nerve injury.  Laryngoscope. 2015;125(2):E67-E72.PubMedGoogle ScholarCrossref
22.
Dahm  JD, Paniello  RC.  Tracheostomy for long-term laryngeal experimentation.  Otolaryngol Head Neck Surg. 1998;118(3, pt 1):376-380.PubMedGoogle ScholarCrossref
23.
Paniello  RC, West  SE.  Laryngeal adductory pressure as a measure of post-reinnervation synkinesis.  Ann Otol Rhinol Laryngol. 2000;109(5):447-451.PubMedGoogle ScholarCrossref
24.
Moore  AM, Wood  MD, Chenard  K,  et al.  Controlled delivery of glial cell line–derived neurotrophic factor enhances motor nerve regeneration.  J Hand Surg Am. 2010;35(12):2008-2017.PubMedGoogle ScholarCrossref
25.
Wood  MD, Sakiyama-Elbert  SE.  Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems.  J Biomed Mater Res A. 2008;84(2):300-312.PubMedGoogle ScholarCrossref
26.
Hudson  TW, Liu  SY, Schmidt  CE.  Engineering an improved acellular nerve graft via optimized chemical processing.  Tissue Eng. 2004;10(9-10):1346-1358.PubMedGoogle ScholarCrossref
27.
Hudson  TW, Zawko  S, Deister  C,  et al.  Optimized acellular nerve graft is immunologically tolerated and supports regeneration.  Tissue Eng. 2004;10(11-12):1641-1651.PubMedGoogle ScholarCrossref
28.
Kawamura  DH, Johnson  PJ, Moore  AM,  et al.  Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration.  Exp Neurol. 2010;223(2):496-504.PubMedGoogle ScholarCrossref
29.
Isaacs  J, Browne  T.  Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft.  Hand (N Y). 2014;9(2):131-137.PubMedGoogle ScholarCrossref
30.
Pfister  LA, Papaloïzos  M, Merkle  HP, Gander  B.  Nerve conduits and growth factor delivery in peripheral nerve repair.  J Peripher Nerv Syst. 2007;12(2):65-82.PubMedGoogle ScholarCrossref
31.
Johnson  PJ, Parker  SR, Sakiyama-Elbert  SE.  Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury.  Biotechnol Bioeng. 2009;104(6):1207-1214.PubMedGoogle ScholarCrossref
Original Investigation
June 2016

Comparison of Conventional, Revascularized, and Bioengineered Methods of Recurrent Laryngeal Nerve Reconstruction

Author Affiliations
  • 1Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
  • 2Department of Biomedical Engineering, Washington University, St Louis, Missouri
JAMA Otolaryngol Head Neck Surg. 2016;142(6):526-532. doi:10.1001/jamaoto.2016.0151
Abstract

Importance  Damage to the recurrent laryngeal nerve (RLN) is highly detrimental to voice, swallow, and cough. The optimal method for reconstitution of a nerve gap after injury is unknown.

Objective  To evaluate multiple methods of RLN reconstruction.

Design, Setting, and Participants  This study used an established canine model of RLN injury to examine purpose-bred, conditioned, female, 20-kg mongrel hounds at Washington University. A total of 32 dogs were examined, with 63 experiments performed.

Interventions  Surgical transection or excision of the RLN with reconstruction by multiple methods.

Main Outcomes and Measures  Six months after injury repair, laryngeal adductor pressures (LAPs), spontaneous and stimulable movement, and graft axon counts by histologic analysis were assessed.

Results  Simple RLN transection with direct neurorrhaphy provided a mean (SD) recovery of 55.5% (12.5%) of baseline LAPs (P = .18 for comparison of LAP recovery among cases from the conventional nerve graft [39.4% (22.2%)]; P = .63 for comparison of LAP recovery among cases from the reverse autograft [60.8% (27.5%)]). Revascularized grafts provided a recovery of 54.5% (46.4%) while short and long acellular grafts provided recoveries of 60.4% (NA) and 39.5% (17.0%). Two of 11 polyglycolic acid reconstructions provided a measurable LAP with a mean (SD) recovery of 37.1% (8.9%) of baseline. Reconstruction with a neural conduit in any condition provided no measurable LAP recovery.

Conclusions and Relevance  Conventional nerve grafting resulted in no significant difference in recovery of LAP function compared with simple neurorrhaphy or reverse autograft. Conventional and revascularized nerve grafts provided similar recovery. The use of bioengineered acellular nerve grafts or nerve conduits for reconstruction resulted in poor recovery of function.

×