Association of Body Mass Index With Infectious Complications in Free Tissue Transfer for Head and Neck Reconstructive Surgery | Otolaryngology | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Ashrafian  H, Athanasiou  T, le Roux  CW.  Heart remodelling and obesity: the complexities and variation of cardiac geometry.  Heart. 2011;97(3):171-172.PubMedGoogle ScholarCrossref
Adams  JP, Murphy  PG.  Obesity in anaesthesia and intensive care.  Br J Anaesth. 2000;85(1):91-108.PubMedGoogle ScholarCrossref
Menke  A, Casagrande  SS, Cowie  CC.  The relationship of adiposity and mortality among people with diabetes in the US general population: a prospective cohort study.  BMJ Open. 2014;4(11):e005671.PubMedGoogle ScholarCrossref
Nobuoka  D, Gotohda  N, Kato  Y, Takahashi  S, Konishi  M, Kinoshita  T.  Influence of excess body weight on the surgical outcomes of total gastrectomy.  Surg Today. 2011;41(7):928-934.PubMedGoogle ScholarCrossref
Mathur  AK, Ghaferi  AA, Osborne  NH,  et al.  Body mass index and adverse perioperative outcomes following hepatic resection.  J Gastrointest Surg. 2010;14(8):1285-1291.PubMedGoogle ScholarCrossref
Yasunaga  H, Horiguchi  H, Matsuda  S, Fushimi  K, Hashimoto  H, Ayanian  JZ.  Body mass index and outcomes following gastrointestinal cancer surgery in Japan.  Br J Surg. 2013;100(10):1335-1343.PubMedGoogle ScholarCrossref
Akiyoshi  T, Ueno  M, Fukunaga  Y,  et al.  Effect of body mass index on short-term outcomes of patients undergoing laparoscopic resection for colorectal cancer: a single institution experience in Japan.  Surg Laparosc Endosc Percutan Tech. 2011;21(6):409-414.PubMedGoogle ScholarCrossref
Hasegawa  T, Kubo  N, Ohira  M,  et al.  Impact of body mass index on surgical outcomes after esophagectomy for patients with esophageal squamous cell carcinoma.  J Gastrointest Surg. 2015;19(2):226-233.PubMedGoogle ScholarCrossref
Ejaz  A, Spolverato  G, Kim  Y,  et al.  Impact of body mass index on perioperative outcomes and survival after resection for gastric cancer.  J Surg Res. 2015;195(1):74-82.PubMedGoogle ScholarCrossref
Zhang  L, Xu  A, Han  W,  et al.  [Effect of body mass index on postoperative outcomes in patients with gastric cancer]  [in Chinese].  Zhonghua Wei Chang Wai Ke Za Zhi. 2016;19(3):296-299.PubMedGoogle Scholar
Ono  S, Ishimaru  M, Ono  Y, Matsui  H, Fushimi  K, Yasunaga  H.  Impact of body mass index on the outcomes of open reduction for mandibular fractures.  J Oral Maxillofac Surg. 2016;74(5):1024.e1-1024.e5.PubMedGoogle ScholarCrossref
Thomas  EJ, Goldman  L, Mangione  CM,  et al.  Body mass index as a correlate of postoperative complications and resource utilization.  Am J Med. 1997;102(3):277-283.PubMedGoogle ScholarCrossref
Maurer  MS, Luchsinger  JA, Wellner  R, Kukuy  E, Edwards  NM.  The effect of body mass index on complications from cardiac surgery in the oldest old.  J Am Geriatr Soc. 2002;50(6):988-994.PubMedGoogle ScholarCrossref
Moulton  MJ, Creswell  LL, Mackey  ME, Cox  JL, Rosenbloom  M.  Obesity is not a risk factor for significant adverse outcomes after cardiac surgery.  Circulation. 1996;94(9)(suppl):II87-II92.PubMedGoogle Scholar
Wigfield  CH, Lindsey  JD, Muñoz  A, Chopra  PS, Edwards  NM, Love  RB.  Is extreme obesity a risk factor for cardiac surgery? an analysis of patients with a BMI > or = 40.  Eur J Cardiothorac Surg. 2006;29(4):434-440.PubMedGoogle ScholarCrossref
Mullen  JT, Moorman  DW, Davenport  DL.  The obesity paradox: body mass index and outcomes in patients undergoing nonbariatric general surgery.  Ann Surg. 2009;250(1):166-172.PubMedGoogle ScholarCrossref
Hollander  Dd, Kampman  E, van Herpen  CM.  Pretreatment body mass index and head and neck cancer outcome: a review of the literature.  Crit Rev Oncol Hematol. 2015;96(2):328-338.PubMedGoogle ScholarCrossref
Davenport  DL, Xenos  ES, Hosokawa  P, Radford  J, Henderson  WG, Endean  ED.  The influence of body mass index obesity status on vascular surgery 30-day morbidity and mortality.  J Vasc Surg. 2009;49(1):140-147.PubMedGoogle ScholarCrossref
Jackson  RS, Black  JH  III, Lum  YW,  et al.  Class I obesity is paradoxically associated with decreased risk of postoperative stroke after carotid endarterectomy.  J Vasc Surg. 2012;55(5):1306-1312.PubMedGoogle ScholarCrossref
Stevens  SM, O’Connell  BP, Meyer  TA.  Obesity related complications in surgery.  Curr Opin Otolaryngol Head Neck Surg. 2015;23(5):341-347.PubMedGoogle ScholarCrossref
Braga  M, Gianotti  L, Radaelli  G,  et al.  Perioperative immunonutrition in patients undergoing cancer surgery: results of a randomized double-blind phase 3 trial.  Arch Surg. 1999;134(4):428-433.PubMedGoogle ScholarCrossref
Turnock  A, Calder  PC, West  AL, Izzard  M, Morton  RP, Plank  LD.  Perioperative immunonutrition in well-nourished patients undergoing surgery for head and neck cancer: evaluation of inflammatory and immunologic outcomes.  Nutrients. 2013;5(4):1186-1199.PubMedGoogle ScholarCrossref
Alshadwi  A, Nadershah  M, Carlson  ER, Young  LS, Burke  PA, Daley  BJ.  Nutritional considerations for head and neck cancer patients: a review of the literature.  J Oral Maxillofac Surg. 2013;71(11):1853-1860.PubMedGoogle ScholarCrossref
Nourissat  A, Bairati  I, Fortin  A,  et al.  Factors associated with weight loss during radiotherapy in patients with stage I or II head and neck cancer.  Support Care Cancer. 2012;20(3):591-599.PubMedGoogle ScholarCrossref
Pai  PC, Chuang  CC, Tseng  CK,  et al.  Impact of pretreatment body mass index on patients with head-and-neck cancer treated with radiation.  Int J Radiat Oncol Biol Phys. 2012;83(1):e93-e100.PubMedGoogle ScholarCrossref
Chasen  MR, Bhargava  R.  A descriptive review of the factors contributing to nutritional compromise in patients with head and neck cancer.  Support Care Cancer. 2009;17(11):1345-1351.PubMedGoogle ScholarCrossref
Dotters-Katz  SK, Feldman  C, Puechl  A, Grotegut  CA, Heine  RP.  Risk factors for post-operative wound infection in the setting of chorioamnionitis and cesarean delivery.  J Matern Fetal Neonatal Med. 2016;29(10):1541-1545.PubMedGoogle ScholarCrossref
Sebastian  A, Huddleston  P  III, Kakar  S, Habermann  E, Wagie  A, Nassr  A.  Risk factors for surgical site infection after posterior cervical spine surgery: an analysis of 5441 patients from the ACS NSQIP 2005-2012.  Spine J. 2016;16(4):504-509.PubMedGoogle ScholarCrossref
Ubags  ND, Stapleton  RD, Vernooy  JH,  et al.  Hyperleptinemia is associated with impaired pulmonary host defense.  JCI Insight. 2016;1(8):pii:e82101.Google ScholarCrossref
de la Garza  G, Militsakh  O, Panwar  A,  et al.  Obesity and perioperative complications in head and neck free tissue reconstruction.  Head Neck. 2016;38(suppl 1):E1188-E1191.PubMedGoogle ScholarCrossref
Ament  R.  Origin of the ASA classification.  Anesthesiology. 1979;51(2):179.PubMedGoogle ScholarCrossref
Clavien  PA, Barkun  J, de Oliveira  ML,  et al.  The Clavien-Dindo classification of surgical complications: five-year experience.  Ann Surg. 2009;250(2):187-196.PubMedGoogle ScholarCrossref
Planas  A, Clará  A, Pou  JM,  et al.  Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men.  Int J Obes Relat Metab Disord. 2001;25(7):1068-1070.PubMedGoogle ScholarCrossref
Folsom  AR, Burke  GL, Ballew  C,  et al.  Relation of body fatness and its distribution to cardiovascular risk factors in young blacks and whites: the role of insulin.  Am J Epidemiol. 1989;130(5):911-924.PubMedGoogle ScholarCrossref
Meller  MM, Toossi  N, Johanson  NA, Gonzalez  MH, Son  MS, Lau  EC.  Risk and cost of 90-day complications in morbidly and superobese patients after total knee arthroplasty.  J Arthroplasty. 2016;31(10):2091-2098.PubMedGoogle ScholarCrossref
Nelson  CL, Elkassabany  NM, Kamath  AF, Liu  J.  Low albumin levels, more than morbid obesity, are associated with complications after TKA.  Clin Orthop Relat Res. 2015;473(10):3163-3172.PubMedGoogle ScholarCrossref
D’Apuzzo  MR, Novicoff  WM, Browne  JA.  The John Insall Award: morbid obesity independently impacts complications, mortality, and resource use after TKA.  Clin Orthop Relat Res. 2015;473(1):57-63.PubMedGoogle ScholarCrossref
O’Brien  JM  Jr, Phillips  GS, Ali  NA, Lucarelli  M, Marsh  CB, Lemeshow  S.  Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury.  Crit Care Med. 2006;34(3):738-744.PubMedGoogle ScholarCrossref
Sakr  Y, Elia  C, Mascia  L,  et al.  Being overweight or obese is associated with decreased mortality in critically ill patients: a retrospective analysis of a large regional Italian multicenter cohort.  J Crit Care. 2012;27(6):714-721.PubMedGoogle ScholarCrossref
Yap  CH, Zimmet  A, Mohajeri  M, Yii  M.  Effect of obesity on early morbidity and mortality following cardiac surgery.  Heart Lung Circ. 2007;16(1):31-36.PubMedGoogle ScholarCrossref
Weltz  V, Guldberg  R, Lose  G.  Efficacy and perioperative safety of synthetic mid-urethral slings in obese women with stress urinary incontinence.  Int Urogynecol J Pelvic Floor Dysfunct. 2015;26(5):641-648.PubMedGoogle Scholar
Hakeem  AR, Cockbain  AJ, Raza  SS,  et al.  Increased morbidity in overweight and obese liver transplant recipients: a single-center experience of 1325 patients from the United Kingdom.  Liver Transpl. 2013;19(5):551-562.PubMedGoogle ScholarCrossref
Conzen  KD, Vachharajani  N, Collins  KM,  et al.  Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis.  HPB (Oxford). 2015;17(3):251-257.PubMedGoogle ScholarCrossref
Nair  S, Verma  S, Thuluvath  PJ.  Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States.  Hepatology. 2002;35(1):105-109.PubMedGoogle ScholarCrossref
Weissenbacher  A, Jara  M, Ulmer  H,  et al.  Recipient and donor body mass index as important risk factors for delayed kidney graft function.  Transplantation. 2012;93(5):524-529.PubMedGoogle ScholarCrossref
Lafranca  JA, IJermans  JN, Betjes  MG, Dor  FJ.  Body mass index and outcome in renal transplant recipients: a systematic review and meta-analysis.  BMC Med. 2015;13:111.PubMedGoogle ScholarCrossref
Cannon  RM, Jones  CM, Hughes  MG, Eng  M, Marvin  MR.  The impact of recipient obesity on outcomes after renal transplantation.  Ann Surg. 2013;257(5):978-984.PubMedGoogle ScholarCrossref
Bardonnaud  N, Pillot  P, Lillaz  J,  et al.  Outcomes of renal transplantation in obese recipients.  Transplant Proc. 2012;44(9):2787-2791.PubMedGoogle ScholarCrossref
Merion  RM, Twork  AM, Rosenberg  L,  et al.  Obesity and renal transplantation.  Surg Gynecol Obstet. 1991;172(5):367-376.PubMedGoogle Scholar
Nicoletto  BB, Fonseca  NK, Manfro  RC, Gonçalves  LF, Leitão  CB, Souza  GC.  Effects of obesity on kidney transplantation outcomes: a systematic review and meta-analysis.  Transplantation. 2014;98(2):167-176.PubMedGoogle ScholarCrossref
Giles  KA, Hamdan  AD, Pomposelli  FB, Wyers  MC, Siracuse  JJ, Schermerhorn  ML.  Body mass index: surgical site infections and mortality after lower extremity bypass from the National Surgical Quality Improvement Program 2005-2007.  Ann Vasc Surg. 2010;24(1):48-56.PubMedGoogle ScholarCrossref
Buerba  R, Roman  SA, Sosa  JA.  Thyroidectomy and parathyroidectomy in patients with high body mass index are safe overall: analysis of 26 864 patients.  Surgery. 2011;150(5):950-958.PubMedGoogle ScholarCrossref
Norman  J, Aronson  K.  Outpatient parathyroid surgery and the differences seen in the morbidly obese.  Otolaryngol Head Neck Surg. 2007;136(2):282-286.PubMedGoogle ScholarCrossref
Copeland  WR, Mallory  GW, Neff  BA, Driscoll  CL, Link  MJ.  Are there modifiable risk factors to prevent a cerebrospinal fluid leak following vestibular schwannoma surgery?  J Neurosurg. 2015;122(2):312-316.PubMedGoogle ScholarCrossref
Dlouhy  BJ, Madhavan  K, Clinger  JD,  et al.  Elevated body mass index and risk of postoperative CSF leak following transsphenoidal surgery.  J Neurosurg. 2012;116(6):1311-1317.PubMedGoogle ScholarCrossref
Ivan  ME, Iorgulescu  JB, El-Sayed  I,  et al.  Risk factors for postoperative cerebrospinal fluid leak and meningitis after expanded endoscopic endonasal surgery.  J Clin Neurosci. 2015;22(1):48-54.PubMedGoogle ScholarCrossref
Miao  L, Chen  H, Xiang  J, Zhang  Y.  A high body mass index in esophageal cancer patients is not associated with adverse outcomes following esophagectomy.  J Cancer Res Clin Oncol. 2015;141(5):941-950.PubMedGoogle ScholarCrossref
Blom  RL, Lagarde  SM, Klinkenbijl  JH, Busch  OR, van Berge Henegouwen  MI.  A high body mass index in esophageal cancer patients does not influence postoperative outcome or long-term survival.  Ann Surg Oncol. 2012;19(3):766-771.PubMedGoogle ScholarCrossref
Mitchell  RM, Mendez  E, Schmitt  NC, Bhrany  AD, Futran  ND.  Antibiotic prophylaxis in patients undergoing head and neck free flap reconstruction.  JAMA Otolaryngol Head Neck Surg. 2015;141(12):1096-1103.PubMedGoogle ScholarCrossref
Pool  C, Kass  J, Spivack  J,  et al.  Increased surgical site infection rates following clindamycin use in head and neck free tissue transfer.  Otolaryngol Head Neck Surg. 2016;154(2):272-278.PubMedGoogle ScholarCrossref
Sun  H, Mi  X, Gao  N, Yan  C, Yu  FS.  Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas.  Invest Ophthalmol Vis Sci. 2015;56(5):3383-3392.PubMedGoogle ScholarCrossref
Wong  SL, Demers  M, Martinod  K,  et al.  Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.  Nat Med. 2015;21(7):815-819.PubMedGoogle ScholarCrossref
Pscherer  S, Sandmann  GH, Ehnert  S, Nussler  AK, Stöckle  U, Freude  T.  Delayed fracture healing in diabetics with distal radius fractures.  Acta Chir Orthop Traumatol Cech. 2015;82(4):268-273.PubMedGoogle Scholar
Lee  FH, Shen  PC, Jou  IM, Li  CY, Hsieh  JLA.  A population-based 16-year study on the risk factors of surgical site infection in patients after bone grafting: a cross-sectional study in Taiwan.  Medicine (Baltimore). 2015;94(47):e2034.PubMedGoogle ScholarCrossref
Gaspar  MP, Kane  PM, Zohn  RC, Buckley  T, Jacoby  SM, Shin  EK.  Variables prognostic for delayed union and nonunion following ulnar shortening fixed with a dedicated osteotomy plate.  J Hand Surg Am. 2016;41(2):237-43.e1, 2.PubMedGoogle ScholarCrossref
Bhattacharya  S, Aggarwal  R, Singh  VP, Ramachandran  S, Datta  M.  Down-regulation of miRNAs during delayed wound healing in diabetes: role of Dicer [published online November 19, 2015].  Mol Med. doi:10.2119/molmed.2014.00186 PubMedGoogle Scholar
Ma  CY, Ji  T, Ow  A,  et al.  Surgical site infection in elderly oral cancer patients: is the evaluation of comorbid conditions helpful in the identification of high-risk ones?  J Oral Maxillofac Surg. 2012;70(10):2445-2452.PubMedGoogle ScholarCrossref
Chung  CU, Wink  JD, Nelson  JA, Fischer  JP, Serletti  JM, Kanchwala  SK.  Surgical site infections after free flap breast reconstruction: an analysis of 2899 patients from the ACS-NSQIP datasets.  J Reconstr Microsurg. 2015;31(6):434-441.PubMedGoogle ScholarCrossref
Liu  SA, Wong  YK, Poon  CK, Wang  CC, Wang  CP, Tung  KC.  Risk factors for wound infection after surgery in primary oral cavity cancer patients.  Laryngoscope. 2007;117(1):166-171.PubMedGoogle ScholarCrossref
Mullen  JT, Davenport  DL, Hutter  MM,  et al.  Impact of body mass index on perioperative outcomes in patients undergoing major intra-abdominal cancer surgery.  Ann Surg Oncol. 2008;15(8):2164-2172.PubMedGoogle ScholarCrossref
McMahon  JD, MacIver  C, Smith  M,  et al.  Postoperative complications after major head and neck surgery with free flap repair—prevalence, patterns, and determinants: a prospective cohort study.  Br J Oral Maxillofac Surg. 2013;51(8):689-695.PubMedGoogle ScholarCrossref
Shum  J, Markiewicz  MR, Park  E,  et al.  Low prealbumin level is a risk factor for microvascular free flap failure.  J Oral Maxillofac Surg. 2014;72(1):169-177.PubMedGoogle ScholarCrossref
Kim  JM, Park  JH, Jeong  SH,  et al.  Relationship between low body mass index and morbidity after gastrectomy for gastric cancer.  Ann Surg Treat Res. 2016;90(4):207-212.PubMedGoogle ScholarCrossref
Hendifar  A, Osipov  A, Khanuja  J,  et al.  Influence of body mass index and albumin on perioperative morbidity and clinical outcomes in resected pancreatic adenocarcinoma.  PLoS One. 2016;11(3):e0152172.PubMedGoogle ScholarCrossref
Original Investigation
June 2017

Association of Body Mass Index With Infectious Complications in Free Tissue Transfer for Head and Neck Reconstructive Surgery

Author Affiliations
  • 1Department of Otolaryngology–Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
  • 2Department of Health Policy and Statistics, Icahn School of Medicine at Mount Sinai, New York, New York
JAMA Otolaryngol Head Neck Surg. 2017;143(6):574-579. doi:10.1001/jamaoto.2016.4304
Key Points

Question  Does elevated body mass index affect the outcomes of patients undergoing head and neck reconstructive surgery using free flaps?

Findings  This cohort study of 415 patients found that those with an elevated body mass index who underwent head and neck reconstruction did not have significantly worse outcomes than patients with a normal body mass index. Overall infectious outcomes were more common in patients with diabetes or those treated with an alternative antibiotic regimen, but the cohort with an elevated body mass index did not have significantly worse outcomes.

Meaning  Elevated body mass index does not seem to play a role as an independent risk factor in postoperative complications in free tissue transfer in head and neck surgery.


Importance  Elevated body mass index (BMI) has been proposed as a risk factor for morbidity and mortality among patients undergoing surgery. Conversely, an elevated BMI may confer a protective effect on perioperative morbidity.

Objective  To examine whether an elevated BMI is an independent risk factor for perioperative and postoperative infectious complications after free tissue transfer in head and neck reconstructive surgery.

Design, Setting, and Participants  This cohort study included patients undergoing major head and neck surgery requiring free tissue transfer at a tertiary care center. Data were collected for 415 patients treated from January 1, 2007, through December 31, 2014.

Main Outcomes and Measures  The outcome of interest was postoperative infection and complications after head and neck surgery using free flaps. Covariates considered for adjustment in the statistical model included alcohol consumption (defined as >5 drinks per day [eg, 360 mL of beer, 150 mL of wine, or 45 mL of 80-proof spirits]), type 2 diabetes, prior radiotherapy, anesthesia time, hypothyroidism, smoking, American Society of Anesthesiologists classification, antibiotic regimen received (defined as a standard regimen of a first- or second-generation cephalosporin with or without metronidazole hydrochloride vs an alternative antibiotic regimen for patients allergic to penicillin), and primary surgeon. A multiple logistic regression model was developed for the incidence of the infection end point as a function of elevated BMI (>30.0).

Results  Among the 415 patients included in this study (277 men [66.7%] and 138 women [33.2%]; mean [SD] age, 61.5 [13.9] years), type 2 diabetes and use of an alternative antibiotic regimen were found to be independently associated with increased infectious complications after free flap surgery of the head and neck, with estimated odds ratios of 2.78 (95% CI, 1.27-6.09) and 2.67 (95% CI, 1.14-6.25), respectively, in the multiple logistic regression model. However, a high BMI was not found to be statistically significant as an independent risk factor for postoperative infectious complication (estimated odds ratio, 1.19; 95% CI, 0.48-2.92).

Conclusions and Relevance  Elevated BMI does not seem to play a role as an independent risk factor in postoperative complications in free tissue transfer in head and neck surgery.