Analysis of Vocal Fold Motion Impairment in Neonates Undergoing Congenital Heart Surgery | Cardiothoracic Surgery | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Carding  PN, Roulstone  S, Northstone  K, Team  AS; ALSPAC Study Team.  The prevalence of childhood dysphonia: a cross-sectional study.  J Voice. 2006;20(4):623-630.PubMedGoogle ScholarCrossref
Bhattacharyya  N.  The prevalence of pediatric voice and swallowing problems in the United States.  Laryngoscope. 2015;125(3):746-750.PubMedGoogle ScholarCrossref
Merati  AL, Keppel  K, Braun  NM, Blumin  JH, Kerschner  JE.  Pediatric voice-related quality of life: findings in healthy children and in common laryngeal disorders.  Ann Otol Rhinol Laryngol. 2008;117(4):259-262.PubMedGoogle ScholarCrossref
Burklow  KA, Phelps  AN, Schultz  JR, McConnell  K, Rudolph  C.  Classifying complex pediatric feeding disorders.  J Pediatr Gastroenterol Nutr. 1998;27(2):143-147.PubMedGoogle ScholarCrossref
Loughlin  GM.  Respiratory consequences of dysfunctional swallowing and aspiration.  Dysphagia. 1989;3(3):126-130.PubMedGoogle ScholarCrossref
Linscheid  TR.  Behavioral treatments for pediatric feeding disorders.  Behav Modif. 2006;30(1):6-23.PubMedGoogle ScholarCrossref
Tawfik  R, Dickson  A, Clarke  M, Thomas  AG.  Caregivers’ perceptions following gastrostomy in severely disabled children with feeding problems.  Dev Med Child Neurol. 1997;39(11):746-751.PubMedGoogle Scholar
Nair  RH, Kesavachandran  C, Shashidhar  S.  Spirometric impairments in undernourished children.  Indian J Physiol Pharmacol. 1999;43(4):467-473.PubMedGoogle Scholar
Abrams  SA.  Chronic pulmonary insufficiency in children and its effects on growth and development.  J Nutr. 2001;131(3):938S-941S.PubMedGoogle ScholarCrossref
Cohen  W, Wynne  DM.  Parent and child responses to the Pediatric Voice-Related Quality-of-Life Questionnaire.  J Voice. 2015;29(3):299-303.PubMedGoogle ScholarCrossref
Tibbetts  KM, Wu  D, Hsu  JV, Burton  WB, Nassar  M, Tan  M.  Etiology and long-term functional swallow outcomes in pediatric unilateral vocal fold immobility.  Int J Pediatr Otorhinolaryngol. 2016;88:179-183.PubMedGoogle ScholarCrossref
Jabbour  J, Martin  T, Beste  D, Robey  T.  Pediatric vocal fold immobility: natural history and the need for long-term follow-up.  JAMA Otolaryngol Head Neck Surg. 2014;140(5):428-433.PubMedGoogle ScholarCrossref
Monfared  A, Kim  D, Jaikumar  S, Gorti  G, Kam  A.  Microsurgical anatomy of the superior and recurrent laryngeal nerves.  Neurosurgery. 2001;49(4):925-932.PubMedGoogle Scholar
Ellis  PD, Pallister  WK.  Recurrent laryngeal nerve palsy and endotracheal intubation.  J Laryngol Otol. 1975;89(8):823-826.PubMedGoogle ScholarCrossref
Salem  MR, Wong  AY, Barangan  VC, Canalis  RF, Shaker  MH, Lotter  AM.  Postoperative vocal cord paralysis in paediatric patients: reports of cases and a review of possible aetiological factors.  Br J Anaesth. 1971;43(7):696-700.PubMedGoogle ScholarCrossref
Dimarakis  I, Protopapas  AD.  Vocal cord palsy as a complication of adult cardiac surgery: surgical correlations and analysis.  Eur J Cardiothorac Surg. 2004;26(4):773-775.PubMedGoogle ScholarCrossref
Kawahito  S, Kitahata  H, Kimura  H, Tanaka  K, Oshita  S.  Recurrent laryngeal nerve palsy after cardiovascular surgery: relationship to the placement of a transesophageal echocardiographic probe.  J Cardiothorac Vasc Anesth. 1999;13(5):528-531.PubMedGoogle ScholarCrossref
Hamdan  AL, Moukarbel  RV, Farhat  F, Obeid  M.  Vocal cord paralysis after open-heart surgery.  Eur J Cardiothorac Surg. 2002;21(4):671-674.PubMedGoogle ScholarCrossref
Dewan  K, Cephus  C, Owczarzak  V, Ocampo  E.  Incidence and implication of vocal fold paresis following neonatal cardiac surgery.  Laryngoscope. 2012;122(12):2781-2785.PubMedGoogle ScholarCrossref
Truong  MT, Messner  AH, Kerschner  JE,  et al.  Pediatric vocal fold paralysis after cardiac surgery: rate of recovery and sequelae.  Otolaryngol Head Neck Surg. 2007;137(5):780-784.PubMedGoogle ScholarCrossref
Carpes  LF, Kozak  FK, Leblanc  JG,  et al.  Assessment of vocal fold mobility before and after cardiothoracic surgery in children.  Arch Otolaryngol Head Neck Surg. 2011;137(6):571-575.PubMedGoogle ScholarCrossref
Smith  ME, King  JD, Elsherif  A, Muntz  HR, Park  AH, Kouretas  PC.  Should all newborns who undergo patent ductus arteriosus ligation be examined for vocal fold mobility?  Laryngoscope. 2009;119(8):1606-1609.PubMedGoogle ScholarCrossref
Skinner  ML, Halstead  LA, Rubinstein  CS, Atz  AM, Andrews  D, Bradley  SM.  Laryngopharyngeal dysfunction after the Norwood procedure.  J Thorac Cardiovasc Surg. 2005;130(5):1293-1301.PubMedGoogle ScholarCrossref
Clement  WA, El-Hakim  H, Phillipos  EZ, Coté  JJ.  Unilateral vocal cord paralysis following patent ductus arteriosus ligation in extremely low-birth-weight infants.  Arch Otolaryngol Head Neck Surg. 2008;134(1):28-33.PubMedGoogle ScholarCrossref
Pereira  KD, Webb  BD, Blakely  ML, Cox  CS  Jr, Lally  KP.  Sequelae of recurrent laryngeal nerve injury after patent ductus arteriosus ligation.  Int J Pediatr Otorhinolaryngol. 2006;70(9):1609-1612.PubMedGoogle ScholarCrossref
Thomas  ID, Seckeler  MD.  Resource utilization for noncardiac admissions in pediatric patients with single ventricle disease.  Am J Cardiol. 2016;117(10):1661-1666.PubMedGoogle ScholarCrossref
Seckeler  MD, Moe  TG, Thomas  ID,  et al.  Hospital resource utilization for common noncardiac diagnoses in adult survivors of single cardiac ventricle.  Am J Cardiol. 2015;116(11):1756-1761.PubMedGoogle ScholarCrossref
HCUP Kids’ Inpatient Database (KID). Healthcare Cost and Utilization Project (HCUP). Agency for Healthcare Research and Quality; Rockville, Maryland: HCUP 2012.
Jenkins  KJ, Gauvreau  K, Newburger  JW, Spray  TL, Moller  JH, Iezzoni  LI.  Consensus-based method for risk adjustment for surgery for congenital heart disease.  J Thorac Cardiovasc Surg. 2002;123(1):110-118.PubMedGoogle ScholarCrossref
Cotts  T, Hirsch  J, Thorne  M, Gajarski  R.  Tracheostomy after pediatric cardiac surgery: frequency, indications, and outcomes.  J Thorac Cardiovasc Surg. 2011;141(2):413-418.PubMedGoogle ScholarCrossref
Alfares  FA, Hynes  CF, Ansari  G,  et al.  Outcomes of recurrent laryngeal nerve injury following congenital heart surgery: a contemporary experience.  J Saudi Heart Assoc. 2016;28(1):1-6.PubMedGoogle ScholarCrossref
Prodhan  P, Agarwal  A, ElHassan  NO,  et al.  Tracheostomy among infants with hypoplastic left heart syndrome undergoing cardiac operations: a multicenter analysis.  Ann Thorac Surg. 2017;103(4):1308-1314.PubMedGoogle ScholarCrossref
Averin  K, Uzark  K, Beekman  RH  III, Willging  JP, Pratt  J, Manning  PB.  Postoperative assessment of laryngopharyngeal dysfunction in neonates after Norwood operation.  Ann Thorac Surg. 2012;94(4):1257-1261.PubMedGoogle ScholarCrossref
Benjamin  JR, Smith  PB, Cotten  CM, Jaggers  J, Goldstein  RF, Malcolm  WF.  Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants.  J Perinatol. 2010;30(6):408-413.PubMedGoogle ScholarCrossref
Davis  JT, Baciewicz  FA, Suriyapa  S, Vauthy  P, Polamreddy  R, Barnett  B.  Vocal cord paralysis in premature infants undergoing ductal closure.  Ann Thorac Surg. 1988;46(2):214-215.PubMedGoogle ScholarCrossref
Fan  LL, Campbell  DN, Clarke  DR, Washington  RL, Fix  EJ, White  CW.  Paralyzed left vocal cord associated with ligation of patent ductus arteriosus.  J Thorac Cardiovasc Surg. 1989;98(4):611-613.PubMedGoogle Scholar
Johnson  EA, Zubair  MM, Armsby  LR,  et al.  Surgical quality predicts length of stay in patients with congenital heart disease.  Pediatr Cardiol. 2016;37(3):593-600.PubMedGoogle ScholarCrossref
Kohr  LM, Dargan  M, Hague  A,  et al.  The incidence of dysphagia in pediatric patients after open heart procedures with transesophageal echocardiography.  Ann Thorac Surg. 2003;76(5):1450-1456.PubMedGoogle ScholarCrossref
Liang  CD, Ko  SF, Huang  SC, Huang  CF, Niu  CK.  Vocal cord paralysis after transcatheter coil embolization of patent ductus arteriosus.  Am Heart J. 2003;146(2):367-371.PubMedGoogle ScholarCrossref
Malcolm  WF, Hornik  C, Evans  A, Smith  PB, Cotten  CM.  Vocal fold paralysis following surgical ductal closure in extremely low birth weight infants: a case series of feeding and respiratory complications.  J Perinatol. 2008;28(11):782-785.PubMedGoogle ScholarCrossref
Richter  AL, Ongkasuwan  J, Ocampo  EC.  Long-term follow-up of vocal fold movement impairment and feeding after neonatal cardiac surgery.  Int J Pediatr Otorhinolaryngol. 2016;83:211-214.PubMedGoogle ScholarCrossref
Sachdeva  R, Hussain  E, Moss  MM,  et al.  Vocal cord dysfunction and feeding difficulties after pediatric cardiovascular surgery.  J Pediatr. 2007;151(3):312-315, 315.e1-315.e2.PubMedGoogle ScholarCrossref
Strychowsky  JE, Rukholm  G, Gupta  MK, Reid  D.  Unilateral vocal fold paralysis after congenital cardiothoracic surgery: a meta-analysis.  Pediatrics. 2014;133(6):e1708-e1723.PubMedGoogle ScholarCrossref
Wilson  MN, Bergeron  LM, Kakade  A,  et al.  Airway management following pediatric cardiothoracic surgery.  Otolaryngol Head Neck Surg. 2013;149(4):621-627.PubMedGoogle ScholarCrossref
Zbar  RI, Chen  AH, Behrendt  DM, Bell  EF, Smith  RJ.  Incidence of vocal fold paralysis in infants undergoing ligation of patent ductus arteriosus.  Ann Thorac Surg. 1996;61(3):814-816.PubMedGoogle ScholarCrossref
Marelli  AJ, Ionescu-Ittu  R, Mackie  AS, Guo  L, Dendukuri  N, Kaouache  M.  Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010.  Circulation. 2014;130(9):749-756.PubMedGoogle ScholarCrossref
O’Leary  JM, Siddiqi  OK, de Ferranti  S, Landzberg  MJ, Opotowsky  AR.  The changing demographics of congenital heart disease hospitalizations in the United States, 1998 through 2010.  JAMA. 2013;309(10):984-986.PubMedGoogle ScholarCrossref
Oster  ME, Lee  KA, Honein  MA, Riehle-Colarusso  T, Shin  M, Correa  A.  Temporal trends in survival among infants with critical congenital heart defects.  Pediatrics. 2013;131(5):e1502-e1508.PubMedGoogle ScholarCrossref
Original Investigation
May 2018

Analysis of Vocal Fold Motion Impairment in Neonates Undergoing Congenital Heart Surgery

Author Affiliations
  • 1Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
  • 2Children’s Healthcare of Atlanta, Atlanta, Georgia
  • 3Department of Otolaryngology-Head and Neck Surgery, Baylor College Of Medicine, Houston, Texas
  • 4Department of Otolaryngology–Head and Neck Surgery, Texas Children’s Hospital, Houston, Texas
  • 5Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Brookline, Massachusetts
  • 6Massachusetts Eye and Ear Infirmary, Boston
  • 7Department of Otolaryngology-Head and Neck Surgery, Cleveland Clinic, Cleveland, Ohio
  • 8Department of Surgery, Emory University School Of Medicine, Atlanta, Georgia
JAMA Otolaryngol Head Neck Surg. 2018;144(5):406-412. doi:10.1001/jamaoto.2017.3459
Key Points

Question  Do differences in cost, postprocedure length of stay (PPLOS), and outcomes for neonates with and without vocal fold motion impairment (VFMI) after congenital heart surgery exist?

Findings  In this cross-sectional analysis of 3725 neonates, the proportion diagnosed with VFMI after congenital heart surgery was 6.9%. Neonates diagnosed with VFMI had significantly higher total hospital cost and PPLOS compared with those who did not; there were no differences in odds of pneumonia, gastrostomy, or tracheostomy.

Meaning  Vocal fold motion impairment following congenital heart surgery was associated with increased cost and PPLOS, and protocols for early identification of VFMI or techniques to prevent VFMI may result in a decrease in cost and PPLOS.


Importance  Vocal fold motion impairment (VFMI) is a known risk factor following congenital heart surgery (CHS). The impact of this diagnosis on utilization and outcomes is unknown.

Objective  To evaluate the cost, postprocedure length of stay (PPLOS), and outcomes for neonates with VFMI after CHS.

Design, Setting, and Participants  A cross-sectional analysis of the 2012 Kids’ Inpatient Database (KID) of neonates who underwent CHS was carried out. The KID is an administrative data set of patients, aged 20 years or younger, and contains data on more than 10 million hospitalizations from 44 states. The KID is limited to inpatient hospitalization and contains discharge summary level of data. Patients were limited to those who were born during the hospitalization and those who were aged 28 days or younger at the time of admission for CHS. A weighted total of 4139 neonates who underwent CHS were identified, of which 3725 survived. The proportion of neonates diagnosed with VFMI was 264 (6.92%) of 3725.

Exposures  Congenital heart surgery.

Main Outcomes and Measures  Cost of inpatient hospital stay, postprocedure length of stay, odds of pneumonia, gastrostomy tube placement, and tracheostomy tube placement. Risk-adjusted generalized linear models examined differences in cost and PPLOS between neonates who underwent CHS and were diagnosed with VFMI and those who were not. Risk-adjusted logistic regression compared the odds of selected outcomes (gastrostomy, tracheostomy, pneumonia). Models were weighted to provide national estimates.

Results  Of 3725 neonates (aged 0-28 days), 2203 (59.1%) were male and 1517 (40.7%) were female. Neonates diagnosed with VFMI had significantly higher total cost by $34 000 (95% CI, 2200-65 000) and PPLOS by 9.1 days (95% CI, 4.6-13.7) compared with those who did not. When PPLOS was included as a covariate in the model for cost, presence of VFMI was no longer significant. There were no differences in odds of pneumonia, gastrostomy, or tracheostomy.

Conclusions and Relevance  Vocal fold motion impairment after CHS was associated with significant increases in cost owing to increased PPLOS. These findings provide a foundation to further investigate standardized screening for VFMI following CHS; early identification and treatment may decrease cost and PPLOS.