Expression Profiling of Inflammatory Mediators in Pediatric Sinus Mucosa | Genetics and Genomics | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Kennedy  DW Pathogenesis of chronic rhinosinusitis.  Ann Otol Rhinol Laryngol Suppl 2004;1936- 9PubMedGoogle Scholar
2.
Lusk  RPStankiewicz  JA Pediatric rhinosinusitis.  Otolaryngol Head Neck Surg 1997;117 (3, pt 2) S53- S57PubMedGoogle ScholarCrossref
3.
Hamilos  DLLeung  DYWood  R  et al.  Evidence for distinct cytokine expression in allergic versus nonallergic chronic sinusitis.  J Allergy Clin Immunol 1995;96 (4) 537- 544PubMedGoogle ScholarCrossref
4.
Hamilos  DLLeung  DYHuston  DPKamil  AWood  RHamid  Q GM-CSF, IL-5 and RANTES immunoreactivity and mRNA expression in chronic hyperplastic sinusitis with nasal polyposis (NP).  Clin Exp Allergy 1998;28 (9) 1145- 1152PubMedGoogle ScholarCrossref
5.
Rhyoo  CSanders  SPLeopold  DAProud  D Sinus mucosal IL-8 gene expression in chronic rhinosinusitis.  J Allergy Clin Immunol 1999;103 (3, pt 1) 395- 400PubMedGoogle ScholarCrossref
6.
Lennard  CMMann  EASun  LLChang  ASBolger  WE Interleukin-1β, interleukin-5, interleukin-6, interleukin-8, and tumor necrosis factor-α in chronic sinusitis: response to systemic corticosteroids.  Am J Rhinol 2000;14 (6) 367- 373PubMedGoogle ScholarCrossref
7.
Singh  PKJia  HPWiles  K  et al.  Production of β-defensins by human airway epithelia.  Proc Natl Acad Sci U S A 1998;95 (25) 14961- 14966PubMedGoogle ScholarCrossref
8.
Lane  APTruong-Tran  QAMyers  ABickel  CSchleimer  RP Serum amyloid A, properdin, complement 3, and toll-like receptors are expressed locally in human sinonasal tissue.  Am J Rhinol 2006;20 (1) 117- 123PubMedGoogle Scholar
9.
Zhao  PSeo  JWang  ZWang  YShneiderman  BHoffman  EP In vivo filtering of in vitro expression data reveals MyoD targets.  C R Biol 2003;326 (10-11) 1049- 1065PubMedGoogle ScholarCrossref
10.
Benson  MJansson  LAdner  MLuts  AUddman  RCardell  LO Gene profiling reveals decreased expression of uteroglobin and other anti-inflammatory genes in nasal fluid cells from patients with intermittent allergic rhinitis.  Clin Exp Allergy 2005;35 (4) 473- 478PubMedGoogle ScholarCrossref
11.
Liu  ZKim  JSypek  JP  et al.  Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray.  J Allergy Clin Immunol 2004;114 (4) 783- 790PubMedGoogle ScholarCrossref
12.
Anand  VKKacker  AOrjuela  AFHuang  CManarey  CXiang  J Inflammatory pathway gene expression in chronic rhinosinusitis.  Am J Rhinol 2006;20 (4) 471- 476PubMedGoogle ScholarCrossref
13.
Gandhi  ABrodsky  LBallow  M Benefits of antibiotic prophylaxis in children with chronic sinusitis: assessment of outcome predictors.  Allergy Proc 1993;14 (1) 37- 43PubMedGoogle ScholarCrossref
14.
Peña  MTAujla  PKPatel  KMZalzal  GHRose  MC Immunohistochemical analyses of MUC5AC mucin expression in sinus mucosa of children with sinusitis and controls.  Ann Otol Rhinol Laryngol 2005;114 (12) 958- 965PubMedGoogle Scholar
15.
Lund  VJKennedy  DWStaging and Therapy Group, Quantification for staging sinusitis.  Ann Otol Rhinol Laryngol Suppl 1995;16717- 21PubMedGoogle Scholar
16.
Lund  VJMackay  IS Staging in rhinosinusitus.  Rhinology 1993;31 (4) 183- 184PubMedGoogle Scholar
17.
Hilleman  MRCarlson  AJ  Jr McLean  AAVella  PPWeibel  REWoodhour  AF Streptococcus pneumoniae polysaccharide vaccine: age and dose responses, safety, persistence of antibody, revaccination, and simultaneous administration of pneumococcal and influenza vaccines.  Rev Infect Dis 1981;3 ((suppl)) S31- S42PubMedGoogle ScholarCrossref
18.
Almon  RRDuBois  DCYao  ZHoffman  EPGhimbovschi  SJusko  WJ Microarray analysis of the temporal response of skeletal muscle to methylprednisolone: comparative analysis of two dosing regimens.  Physiol Genomics 2007;30 (3) 282- 299PubMedGoogle ScholarCrossref
19.
Seo  JGordish-Dressman  HHoffman  EP An interactive power analysis tool for microarray hypothesis testing and generation.  Bioinformatics 2006;22 (7) 808- 814PubMedGoogle ScholarCrossref
20.
Seo  JHoffman  EP Probe set algorithms: is there a rational best bet?  BMC Bioinformatics 2006;7395PubMedGoogle ScholarCrossref
21.
Peña  MTBrodsky  LGorfien  JNoble  B Immunohistochemical analysis of mononuclear inflammatory cells in nasal and sinus epithelium in children with sinusitis  Am J Rhinol 1996;10 (3) 149- 159Google ScholarCrossref
22.
Lane  APTruong-Tran  QASchleimer  RP Altered expression of genes associated with innate immunity and inflammation in recalcitrant rhinosinusitis with polyps.  Am J Rhinol 2006;20 (2) 138- 144PubMedGoogle Scholar
23.
Yasumatsu  RNakashima  TKuratomi  Y  et al.  Serum squamous cell carcinoma antigen is a useful biologic marker in patients with inverted papillomas of the sinonasal tract.  Cancer 2002;94 (1) 152- 158PubMedGoogle ScholarCrossref
24.
Chan  KHAMCoffinet  LSimoes  EACool  CLiu  AH Chronic rhinosinusitis in young children differs from adults: a histopathology study.  J Pediatr 2004;144 (2) 206- 212PubMedGoogle ScholarCrossref
25.
Undén  ALAndreasson  AElofsson  S  et al.  Inflammatory cytokines, behaviour and age as determinants of self-rated health in women.  Clin Sci (Lond) 2007;112 (6) 363- 373PubMedGoogle ScholarCrossref
Original Article
January 19, 2009

Expression Profiling of Inflammatory Mediators in Pediatric Sinus Mucosa

Author Affiliations

Author Affiliations: Center for Genetic Medicine Research (Drs Wu, Ghimbovschi, Rose, and Peña and Ms Aujla) and Division of Otolaryngology (Dr Peña), Children's National Medical Center, Washington, DC; and Departments of Otolaryngology (Dr Peña) and Biochemistry and Molecular Biology (Dr Rose), George Washington University, Washington, DC.

Arch Otolaryngol Head Neck Surg. 2009;135(1):65-72. doi:10.1001/archoto.2008.505
Abstract

Objective  To evaluate gene expression by microarray analyses of inflammatory mediators in the sinus mucosa of children with and without chronic rhinosinusitis (CRS).

Design  Prospective molecular genetics analysis.

Setting  Children's National Medical Center, Washington, DC.

Subjects  Eleven patients with CRS who underwent endoscopic sinus surgery and 10 control children who underwent craniofacial resection or neurosurgical procedures.

Main Outcome Measures  Gene expression levels of sinus tissue from 6 patients with CRS and 6 controls and messenger RNA expression levels of upregulated inflammatory/immune response genes, as well as cytokines of interest, determined by quantitative reverse transcription–polymerase chain reaction.

Results  Gene expression using the Plier algorithm yielded the most consistent grouping of samples: 96 genes were significantly upregulated more than 2-fold, and 123 genes were downregulated by at least 50% in the CRS sinus tissues compared with controls (P < .05). GeneSpring analysis demonstrated significant changes in several ontology categories in the CRS samples, including inflammatory/immune response genes. The chemokines CXCL13 and CXCL5, serum amyloid A, serpin B4, and defensin β1 were highly upregulated (≥5-fold). Increased expression of these genes was validated by quantitative reverse transcription–polymerase chain reaction in an independent set of tissues. Expression levels of interleukins 5, 6, and 8 were similar in both cohorts; these results were validated by reverse transcription–polymerase chain reaction.

Conclusions  Microarray analyses of sinus mucosa in children with CRS showed an increased expression of inflammatory genes involved in innate and adaptive immune systems. This technology can be successfully used to identify genes implicated in the pathogenesis of pediatric CRS.

×