The Clinical Value of the Multiple-Frequency 80-Hz Auditory Steady-State Response in Adults With Normal Hearing and Hearing Loss | Otolaryngology | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Joint Committee on Infant Hearing, American Academy of Audiology, American Academy of Pediatrics, American Speech-Language-Hearing Association, Directors of Speech and Hearing Programs in State Health and Welfare Agencies, Year 2000 position statement: principles and guidelines for early hearing detection and intervention programs.  Pediatrics 2000;106 (4) 798- 817PubMedGoogle ScholarCrossref
Stapells  DR Frequency-specific evoked potential audiometry in infants. Seewald  RC A Sound Foundation Through Early Amplification Proceedings of an International Conference Stäfa, Switzerland Phonak AG2000;13- 31Google Scholar
Valdes  JLPerez-Abalo  MCMartin  V  et al.  Comparison of statistical indicators for the automatic detection of 80 Hz auditory steady state responses.  Ear Hear 1997;18 (5) 420- 429PubMedGoogle ScholarCrossref
John  MSLins  OGBoucher  BLPicton  TW Multiple auditory steady-state responses (MASTER): stimulus and recording parameters.  Audiology 1998;37 (2) 59- 82PubMedGoogle ScholarCrossref
Rance  GDowell  RCRickards  FWBeer  DEClark  GM Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response.  Ear Hear 1998;19 (1) 48- 61PubMedGoogle ScholarCrossref
Levi  ECFolsom  RCDobie  RA Amplitude-modulation following response (AMFR): effects of modulation rate, carrier frequency, age, and state.  Hear Res 1993;68 (1) 42- 52PubMedGoogle ScholarCrossref
Dimitrijevic  AJohn  MSVan Roon  P  et al.  Estimating the audiogram using multiple auditory steady-state responses.  J Am Acad Audiol 2002;13 (4) 205- 224PubMedGoogle Scholar
Swanepoel  DHugo  RRoode  R Auditory steady-state responses for children with severe to profound hearing loss.  Arch Otolaryngol Head Neck Surg 2004;130 (5) 531- 535PubMedGoogle ScholarCrossref
Rance  GRickards  F Prediction of hearing threshold in infants using auditory steady-state evoked potentials.  J Am Acad Audiol 2002;13 (5) 236- 245PubMedGoogle Scholar
Swanepoel  DErasmus  H Auditory steady-state responses for estimating moderate hearing loss.  Eur Arch Otorhinolaryngol 2007;264 (7) 755- 759PubMedGoogle ScholarCrossref
Luts  HWouters  J Hearing assessment by recording multiple auditory steady-state responses: the influence of test duration.  Int J Audiol 2004;43 (8) 471- 478PubMedGoogle ScholarCrossref
Herdman  ATStapells  DK Auditory steady-state response thresholds of adults with sensorineural hearing impairments.  Int J Audiol 2003;42 (5) 237- 248PubMedGoogle ScholarCrossref
Tlumak  AIRubinstein  EDurrant  JD Meta-analysis of variables that affect accuracy of threshold estimation via measurement of the auditory steady-state response (ASSR).  Int J Audiol 2007;46 (11) 692- 710PubMedGoogle ScholarCrossref
Picton  TWDimitrijevic  APerez-Abalo  MCVan Roon  P Estimating audiometric thresholds using auditory steady-state responses.  J Am Acad Audiol 2005;16 (3) 140- 156PubMedGoogle ScholarCrossref
Tharpe  AM Unilateral and mild bilateral hearing loss in children: past and current perspectives.  Trends Amplif 2008;12 (1) 7- 15PubMedGoogle ScholarCrossref
Jeng  FCBrownt  CJJohnson  TAVander Werff  KR Estimating air-bone gaps using auditory steady-state responses.  J Am Acad Audiol 2004;15 (1) 67- 78PubMedGoogle ScholarCrossref
Tonini  RBallay  CManolidis  S Auditory steady-state response audiometry in profound SNHL: the impact of abnormal middle ear function.  Ear Nose Throat J 2005;84 (5) 282, 284- 286, 288PubMedGoogle Scholar
Carhart  RJerger  JF Preferred method for clinical determination of pure-tone thresholds.  J Speech Hear Disord 1959;24330- 345Google Scholar
John  MSPicton  TW MASTER: a Windows program for recording multiple auditory steady-state responses.  Comput Methods Programs Biomed 2000;61 (2) 125- 150PubMedGoogle ScholarCrossref
John  MSBrown  DKMuir  PJPicton  TW Recording auditory steady-state responses in young infants.  Ear Hear 2004;25 (6) 539- 553PubMedGoogle ScholarCrossref
D'haenens  WDhooge  IDe Vel  EMaes  LBockstael  AVinck  BM Auditory steady-state responses to MM and exponential envelope AM(2)/FM stimuli in normal-hearing adults.  Int J Audiol 2007;46 (8) 399- 406PubMedGoogle ScholarCrossref
Lins  OGPicton  TWBoucher  BL  et al.  Frequency-specific audiometry using steady-state responses.  Ear Hear 1996;17 (2) 81- 96PubMedGoogle ScholarCrossref
Van Maanen  AStapells  DR Comparison of multiple auditory steady-state responses (80 versus 40 Hz) and slow cortical potentials for threshold estimation in hearing-impaired adults.  Int J Audiol 2005;44 (11) 613- 624PubMedGoogle ScholarCrossref
Stürzebecher  ECebulla  MElberling  CBerger  T New efficient stimuli for evoking frequency-specific auditory steady-state responses.  J Am Acad Audiol 2006;17 (6) 448- 461PubMedGoogle ScholarCrossref
Rance  GTomlin  DRickards  FW Comparison of auditory steady-state responses and tone-burst auditory brainstem responses in normal babies.  Ear Hear 2006;27 (6) 751- 762PubMedGoogle ScholarCrossref
Small  SAHatton  JLStapells  DR Effects of bone oscillator coupling method, placement location, and occlusion on bone-conduction auditory steady-state responses in infants.  Ear Hear 2007;28 (1) 83- 98PubMedGoogle ScholarCrossref
Vander Werff  KRBrown  CJ Effect of audiometric configuration on threshold and suprathreshold auditory steady-state responses.  Ear Hear 2005;26 (3) 310- 326PubMedGoogle ScholarCrossref
Picton  TWJohn  MSDimitrijevic  APurcell  D Human auditory steady-state responses.  Int J Audiol 2003;42 (4) 177- 219PubMedGoogle ScholarCrossref
Gravel  JS Potential pitfalls in assessment of infants and young children. Seewald  RCGravel  JS A Sound Foundation Through Early Amplification Proceedings of the Second International Conference Stäfa, Switzerland Phonak AG2001;85- 101Google Scholar
Luts  HDesloovere  CWouters  J Clinical application of dichotic multiple-stimulus auditory steady-state responses in high-risk newborns and young children.  Audiol Neurootol 2006;11 (1) 24- 37PubMedGoogle ScholarCrossref
Savio  GPerez-Abalo  MCGaya  JHernandez  OMijares  E Test accuracy and prognostic validity of multiple auditory steady state responses for targeted hearing screening.  Int J Audiol 2006;45 (2) 109- 120PubMedGoogle ScholarCrossref
Original Article
May 18, 2009

The Clinical Value of the Multiple-Frequency 80-Hz Auditory Steady-State Response in Adults With Normal Hearing and Hearing Loss

Author Affiliations

Author Affiliations: Ear, Nose, and Throat Department, Faculty of Medicine, Ghent University, Ghent, Belgium.

Arch Otolaryngol Head Neck Surg. 2009;135(5):496-506. doi:10.1001/archoto.2009.32

Objectives  To determine the ability of the air-conduction multiple-frequency auditory steady-state response (ASSR) technique to diagnose normal hearing (NH) and mild and moderate degrees of sensorineural hearing loss (SNHL), to assess patients with conductive hearing loss (CHL), to evaluate flat and sloping configurations of hearing impairment, and to provide sensitivity and specificity values for various ASSR cutoff criteria.

Design  A comparative study between ASSR and criterion-standard behavioral thresholds.

Setting  Ear, nose, and throat department at a university hospital.

Patients  The study population comprised 40 adults with NH, 17 with SNHL, and 7 with CHL.

Main Outcome Measures  The measure of interest was the difference between ASSR and behavioral thresholds at 0.5, 1.0, 2.0, and 4.0 kHz. The sensitivity, specificity, positive predictive value, negative predictive value, and efficiency were calculated for several ASSR cutoff criteria.

Results  The ASSR technique clearly distinguished moderate SNHL from NH, but the “mild SNHL and NH” and “mild SNHL and moderate SNHL” differentiation was particularly difficult at 0.5 and 2.0 kHz, respectively. Air-conduction ASSR thresholds accurately predicted behavioral thresholds in CHL. The ASSR system precisely reflected the flat and sloping configurations. Finally, the most appropriate ASSR cutoff point for normality seems to be the 30-dB-or-lower criterion.

Conclusions  In adults, the multiple-frequency 80-Hz ASSR technique can be used to determine the degree and configuration of hearing loss. Although air-conduction ASSR thresholds accurately predicted behavioral thresholds in CHL, future research with bone-conduction ASSRs is necessary to establish the type of hearing loss. Furthermore, the applicability of these findings still needs to be confirmed for infants.