Virulence of Pneumococcal Proteins on the Inner Ear | Infectious Diseases | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Teele  DWKlein  JORosner  B Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study.  J Infect Dis 1989;160 (1) 83- 94PubMedGoogle ScholarCrossref
2.
Bergus  GRLevy  SMKirchner  HLWarren  JJLevy  BT A prospective study of antibiotic use and associated infections in young children.  Paediatr Perinat Epidemiol 2001;15 (1) 61- 67PubMedGoogle ScholarCrossref
3.
McClay  JE Resistant bacteria in the adenoids: a preliminary report.  Arch Otolaryngol Head Neck Surg 2000;126 (5) 625- 629PubMedGoogle ScholarCrossref
4.
Zapalac  JSBillings  KRSchwade  NDRoland  PS Suppurative complications of acute otitis media in the era of antibiotic resistance.  Arch Otolaryngol Head Neck Surg 2002;128 (6) 660- 663PubMedGoogle ScholarCrossref
5.
Redaelli de Zinis  LOCampovecchi  CParrinello  GAntonelli  AR Predisposing factors for inner ear hearing loss association with chronic otitis media.  Int J Audiol 2005;44 (10) 593- 598PubMedGoogle ScholarCrossref
6.
Paton  JC Novel pneumococcal surface proteins: role in virulence and vaccine potential.  Trends Microbiol 1998;6 (3) 85- 87PubMedGoogle ScholarCrossref
7.
Schachern  PTsuprun  VCureoglu  C  et al.  The round window membrane in otitis media: effect of pneumococcal proteins.  Arch Otolaryngol Head Neck Surg 2008;134 (6) 658- 662PubMedGoogle ScholarCrossref
8.
Schachern  PAPaparella  MMHybertson  RSano  SDuvall  AJ  III Bacterial tympanogenic labyrinthitis, meningitis, and sensorineural damage.  Arch Otolaryngol Head Neck Surg 1992;118 (1) 53- 57PubMedGoogle ScholarCrossref
9.
Hunter  LLMargolis  RHRykken  JRLe  CTDaly  KAGiebink  GS High frequency hearing loss associated with otitis media.  Ear Hear 1996;17 (1) 1- 11PubMedGoogle ScholarCrossref
10.
Cureoglu  SSchachern  PAPaparella  MMLindgren  BR Cochlear changes in chronic otitis media.  Laryngoscope 2004;114 (4) 622- 626PubMedGoogle ScholarCrossref
11.
Hausdorff  WPBryant  JParadiso  PRSiber  GR Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I.  Clin Infect Dis 2000;30 (1) 100- 121PubMedGoogle ScholarCrossref
12.
Roche  AMKing  SJWeiser  JN Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice.  Infect Immun 2007;75 (5) 2469- 2475PubMedGoogle ScholarCrossref
13.
Tu  AHFulgham  RLMcCrory  MABriles  DESzalai  AJ Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae.  Infect Immun 1999;67 (9) 4720- 4724PubMedGoogle Scholar
14.
Ren  BSzalai  AJHollingshead  SKBriles  DE Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface.  Infect Immun 2004;72 (1) 114- 122PubMedGoogle ScholarCrossref
15.
Dintilhac  AAlloing  GGranadel  CClaverys  JP Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases.  Mol Microbiol 1997;25 (4) 727- 739PubMedGoogle ScholarCrossref
16.
Sato  KQuartey  MKLiebeler  CLLe  CTGiebink  GS Roles of autolysin and pneumolsin in middle ear inflammation caused by a type 3 streptococcus pneumoniae strain in the chinchilla otitis media model.  Infect Immun 1996;64 (4) 1140- 1145PubMedGoogle Scholar
17.
Jedrzejas  MJ Unveiling molecular mechanisms of pneumococcal surface protein A interaction with antibodies and lactoferrin.  Clin Chim Acta 2006;367 (1-2) 1- 10PubMedGoogle ScholarCrossref
18.
Giebink  GSCarlson  BAHetherington  SVHostetter  MKLe  CTJuhn  SK Bacterial and polymorphonuclear leukocyte contribution to middle ear inflammation in chronic otitis media with effusion.  Ann Otol Rhinol Laryngol 1985;94 (4, pt 1) 398- 402PubMedGoogle Scholar
19.
Wu  HYNahm  MHGuo  YRussell  MWBriles  DE Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae.  J Infect Dis 1997;175 (4) 839- 846PubMedGoogle ScholarCrossref
20.
Moscoso  MGarcia  ELopez  R Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion.  J Bacteriol 2006;188 (22) 7785- 7795PubMedGoogle ScholarCrossref
21.
Crain  MJWaltman  WD  IITurner  JS  et al.  Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae Infect Immun 1990;58 (10) 3293- 3299PubMedGoogle Scholar
22.
Palaniappan  RSingh  SSingh  UP  et al.  Differential PsaA-, PspA-, PspC-, and Pdb-specific immune responses in a mouse model of pneumococcal carriage.  Infect Immun 2005;73 (2) 1006- 1013PubMedGoogle ScholarCrossref
23.
Nabors  GSBraun  PAHerrmann  DJ  et al.  Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules.  Vaccine 2000;18 (17) 1743- 1754PubMedGoogle ScholarCrossref
24.
Briles  DEHollingshead  SBrooks-Walter  A  et al.  The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection.  Vaccine 2000;18 (16) 1701- 1711PubMedGoogle ScholarCrossref
25.
Arulanandam  BPLynch  JMBriles  DEHollingshead  SMetzger  DW Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection.  Infect Immun 2001;69 (11) 6718- 6724PubMedGoogle ScholarCrossref
26.
Tuomanen  E Molecular and cellular biology of pneumococcal infection.  Curr Opin Microbiol 1999;2 (1) 35- 39PubMedGoogle ScholarCrossref
27.
Briles  DEAdes  EPaton  JC  et al.  Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae Infect Immun 2000;68 (2) 796- 800PubMedGoogle ScholarCrossref
28.
Romero-Steiner  SCaba  JRajam  G  et al.  Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies.  Vaccine 2006;24 (16) 3224- 3231PubMedGoogle ScholarCrossref
Original Article
July 2009

Virulence of Pneumococcal Proteins on the Inner Ear

Author Affiliations

Author Affiliations: Departments of Otolaryngology (Ms Schachern and Drs Tsuprun, Cureoglu, Paparella, and Juhn) and Pediatrics and Laboratory Medicine and Pathology (Dr Ferrieri), University of Minnesota, Minneapolis; and Department of Microbiology, University of Alabama at Birmingham (Dr Briles).

Arch Otolaryngol Head Neck Surg. 2009;135(7):657-661. doi:10.1001/archotol.125.12.1371
Abstract

Objective  To investigate the effects of the virulence characteristics of specific pneumococcal proteins on the inner ear.

Main Outcome Measures  A histologic comparison of inflammatory cell infiltration and pathologic changes in the round window membrane and inner ear.

Results  Most of the animals inoculated with high-dose pneumolysin or wild-type bacteria showed severe pathologic changes of the inner ears. The inner ears of most animals inoculated with surface protein A or surface antigen A–deficient bacteria appeared normal.

Conclusions  Pneumococcal surface protein A and pneumococcal surface antigen A are 2 important virulence factors in inner ear damage secondary to pneumococcal otitis media. Mutation of these virulence factors results in less inner ear damage.

×