Virulence of Pneumococcal Proteins on the Inner Ear | Infectious Diseases | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Teele  DWKlein  JORosner  B Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study.  J Infect Dis 1989;160 (1) 83- 94PubMedGoogle ScholarCrossref
Bergus  GRLevy  SMKirchner  HLWarren  JJLevy  BT A prospective study of antibiotic use and associated infections in young children.  Paediatr Perinat Epidemiol 2001;15 (1) 61- 67PubMedGoogle ScholarCrossref
McClay  JE Resistant bacteria in the adenoids: a preliminary report.  Arch Otolaryngol Head Neck Surg 2000;126 (5) 625- 629PubMedGoogle ScholarCrossref
Zapalac  JSBillings  KRSchwade  NDRoland  PS Suppurative complications of acute otitis media in the era of antibiotic resistance.  Arch Otolaryngol Head Neck Surg 2002;128 (6) 660- 663PubMedGoogle ScholarCrossref
Redaelli de Zinis  LOCampovecchi  CParrinello  GAntonelli  AR Predisposing factors for inner ear hearing loss association with chronic otitis media.  Int J Audiol 2005;44 (10) 593- 598PubMedGoogle ScholarCrossref
Paton  JC Novel pneumococcal surface proteins: role in virulence and vaccine potential.  Trends Microbiol 1998;6 (3) 85- 87PubMedGoogle ScholarCrossref
Schachern  PTsuprun  VCureoglu  C  et al.  The round window membrane in otitis media: effect of pneumococcal proteins.  Arch Otolaryngol Head Neck Surg 2008;134 (6) 658- 662PubMedGoogle ScholarCrossref
Schachern  PAPaparella  MMHybertson  RSano  SDuvall  AJ  III Bacterial tympanogenic labyrinthitis, meningitis, and sensorineural damage.  Arch Otolaryngol Head Neck Surg 1992;118 (1) 53- 57PubMedGoogle ScholarCrossref
Hunter  LLMargolis  RHRykken  JRLe  CTDaly  KAGiebink  GS High frequency hearing loss associated with otitis media.  Ear Hear 1996;17 (1) 1- 11PubMedGoogle ScholarCrossref
Cureoglu  SSchachern  PAPaparella  MMLindgren  BR Cochlear changes in chronic otitis media.  Laryngoscope 2004;114 (4) 622- 626PubMedGoogle ScholarCrossref
Hausdorff  WPBryant  JParadiso  PRSiber  GR Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I.  Clin Infect Dis 2000;30 (1) 100- 121PubMedGoogle ScholarCrossref
Roche  AMKing  SJWeiser  JN Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice.  Infect Immun 2007;75 (5) 2469- 2475PubMedGoogle ScholarCrossref
Tu  AHFulgham  RLMcCrory  MABriles  DESzalai  AJ Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae.  Infect Immun 1999;67 (9) 4720- 4724PubMedGoogle Scholar
Ren  BSzalai  AJHollingshead  SKBriles  DE Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface.  Infect Immun 2004;72 (1) 114- 122PubMedGoogle ScholarCrossref
Dintilhac  AAlloing  GGranadel  CClaverys  JP Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases.  Mol Microbiol 1997;25 (4) 727- 739PubMedGoogle ScholarCrossref
Sato  KQuartey  MKLiebeler  CLLe  CTGiebink  GS Roles of autolysin and pneumolsin in middle ear inflammation caused by a type 3 streptococcus pneumoniae strain in the chinchilla otitis media model.  Infect Immun 1996;64 (4) 1140- 1145PubMedGoogle Scholar
Jedrzejas  MJ Unveiling molecular mechanisms of pneumococcal surface protein A interaction with antibodies and lactoferrin.  Clin Chim Acta 2006;367 (1-2) 1- 10PubMedGoogle ScholarCrossref
Giebink  GSCarlson  BAHetherington  SVHostetter  MKLe  CTJuhn  SK Bacterial and polymorphonuclear leukocyte contribution to middle ear inflammation in chronic otitis media with effusion.  Ann Otol Rhinol Laryngol 1985;94 (4, pt 1) 398- 402PubMedGoogle Scholar
Wu  HYNahm  MHGuo  YRussell  MWBriles  DE Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae.  J Infect Dis 1997;175 (4) 839- 846PubMedGoogle ScholarCrossref
Moscoso  MGarcia  ELopez  R Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion.  J Bacteriol 2006;188 (22) 7785- 7795PubMedGoogle ScholarCrossref
Crain  MJWaltman  WD  IITurner  JS  et al.  Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae Infect Immun 1990;58 (10) 3293- 3299PubMedGoogle Scholar
Palaniappan  RSingh  SSingh  UP  et al.  Differential PsaA-, PspA-, PspC-, and Pdb-specific immune responses in a mouse model of pneumococcal carriage.  Infect Immun 2005;73 (2) 1006- 1013PubMedGoogle ScholarCrossref
Nabors  GSBraun  PAHerrmann  DJ  et al.  Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules.  Vaccine 2000;18 (17) 1743- 1754PubMedGoogle ScholarCrossref
Briles  DEHollingshead  SBrooks-Walter  A  et al.  The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection.  Vaccine 2000;18 (16) 1701- 1711PubMedGoogle ScholarCrossref
Arulanandam  BPLynch  JMBriles  DEHollingshead  SMetzger  DW Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection.  Infect Immun 2001;69 (11) 6718- 6724PubMedGoogle ScholarCrossref
Tuomanen  E Molecular and cellular biology of pneumococcal infection.  Curr Opin Microbiol 1999;2 (1) 35- 39PubMedGoogle ScholarCrossref
Briles  DEAdes  EPaton  JC  et al.  Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae Infect Immun 2000;68 (2) 796- 800PubMedGoogle ScholarCrossref
Romero-Steiner  SCaba  JRajam  G  et al.  Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies.  Vaccine 2006;24 (16) 3224- 3231PubMedGoogle ScholarCrossref
Original Article
July 2009

Virulence of Pneumococcal Proteins on the Inner Ear

Author Affiliations

Author Affiliations: Departments of Otolaryngology (Ms Schachern and Drs Tsuprun, Cureoglu, Paparella, and Juhn) and Pediatrics and Laboratory Medicine and Pathology (Dr Ferrieri), University of Minnesota, Minneapolis; and Department of Microbiology, University of Alabama at Birmingham (Dr Briles).

Arch Otolaryngol Head Neck Surg. 2009;135(7):657-661. doi:10.1001/archotol.125.12.1371

Objective  To investigate the effects of the virulence characteristics of specific pneumococcal proteins on the inner ear.

Main Outcome Measures  A histologic comparison of inflammatory cell infiltration and pathologic changes in the round window membrane and inner ear.

Results  Most of the animals inoculated with high-dose pneumolysin or wild-type bacteria showed severe pathologic changes of the inner ears. The inner ears of most animals inoculated with surface protein A or surface antigen A–deficient bacteria appeared normal.

Conclusions  Pneumococcal surface protein A and pneumococcal surface antigen A are 2 important virulence factors in inner ear damage secondary to pneumococcal otitis media. Mutation of these virulence factors results in less inner ear damage.