High-Resolution Imaging of the Middle Ear With Optical Coherence Tomography: A Feasibility Study | Ophthalmic Imaging | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Chole  RASkarada  DJ Middle ear reconstructive techniques.  Otolaryngol Clin North Am.1999;32:489-503.Google Scholar
2.
Mutlu  Cda Costa  SSPaparella  MMSchachern  PA Clinical-histopathological correlations of pitfalls in middle ear surgery.  Eur Arch Otorhinolaryngol.1998;255:189-194.Google Scholar
3.
Metson  RCosenza  MGliklich  REMontgomery  WW The role of image-guidance systems for head and neck surgery.  Arch Otolaryngol Head Neck Surg.1999;125:1100-1104.Google Scholar
4.
Mer  SBDerbyshire  AJBrushenko  APomarelli  DA Fiberoptic endoscopes for examining the middle ear.  Arch Otolaryngol.1967;85:387-393.Google Scholar
5.
Kimura  HYamagushi  HCheng  SFunasaka  S Direct observation of the tympanic cavity by the superfine fiberscope.  Nippon Jibiinkoka Gakkai Kaiho.1989;92:233-238.Google Scholar
6.
Tschabitscher  MKlug  C Two-port endoscopy of the middle ear.  Arch Otolaryngol Head Neck Surg.1999;125:433-437.Google Scholar
7.
Huang  DSwanson  EALin  CP  et al Optical coherence tomography.  Science.1991;254:1178-1181.Google Scholar
8.
Hee  MRIzatt  JASwanson  EA  et al Optical coherence tomography of the human retina.  Arch Ophthalmol.1995;113:325-332.Google Scholar
9.
Puliafito  CAHee  MRLin  CP  et al Imaging of macular disease with optical coherence tomography (OCT).  Ophthalmology.1995;102:217-229.Google Scholar
10.
Puliatifo  CAHee  MRSchumann  JSFujimoto  JG Optical Coherence Tomography of Ocular Diseases.  Thorofare, NJ: Slack Inc; 1995.
11.
Fujimoto  JGBrezinski  METearney  GJ  et al Optical biopsy and imaging using optical coherence tomography.  Nat Med.1995;1:970-972.Google Scholar
12.
Schmitt  JYadlowsky  MBonner  R Subsurface imaging of living skin with optical coherence microscopy.  Dermatology.1995;191:93-98.Google Scholar
13.
Brezinski  METearney  GJBouma  BE  et al Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology.  Circulation.1996;93:1206-1213.Google Scholar
14.
Tearney  GJBrezinski  MEBoppart  SA  et al Images in cardiovascular medicine: catheter-based optical imaging of a human coronary artery.  Circulation.1996;94:3013. Google Scholar
15.
Brezinski  METearney  GJBoppart  SASwanson  EASouthern  JFFujimoto  JG Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics.  J Surg Res.1997;71:32-40.Google Scholar
16.
Pitris  CGoodman  ABoppart  SALibus  JJFujimoto  JGBrezinski  ME High-resolution imaging of gynecologic neoplasms using optical coherence tomography.  Obstet Gynecol.1999;93:135-139.Google Scholar
17.
Pitris  CJesser  CBoppart  SAStamper  DBrezinski  MEFujimoto  JG Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies.  J Gastroenterol.2000;35:87-92.Google Scholar
18.
Herrmann  JMPitris  CBouma  BEBoppart  SAFujimoto  JGBrezinski  ME High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography.  J Rheumatol.1999;26:627-635.Google Scholar
19.
Tearney  GJBoppart  SABouma  BE  et al Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography.  Optics Lett.1996;21:543-545.Google Scholar
20.
Tearney  GJBrezinski  MEBouma  BE  et al In vivo endoscopic optical biopsy with optical coherence tomography.  Science.1997;276:2037-2039.Google Scholar
21.
Swanson  EAHuang  DHee  MRFujimoto  JGLin  CPPuliafito  CA High-speed optical coherence domain reflectometry.  Optics Lett.1992;17:151-153.Google Scholar
22.
Haus  HA Waves and Fields in Optoelectronics.  Englewood Cliffs,NJ: Prentice-Hall International Inc; 1984.
23.
Schmitt  JMKnuttel  AYadlowsky  MEckhaus  MA Optical-coherence tomography of a dense tissue: statistics of attenuation and back-scattering.  Phys Med Biol.1994;39:1705-1720.Google Scholar
24.
Boppart  SABouma  BEPitris  CTearney  GJFujimoto  JGBrezinski  ME Forward-imaging instruments for optical coherence tomography.  Optics Lett.1997;22:1618-1620.Google Scholar
25.
Drexler  WMorgner  UKartner  FX  et al In vivo ultrahigh-resolution optical coherence tomography.  Optics Lett.1999;24:1221-1223.Google Scholar
Original Article
June 2001

High-Resolution Imaging of the Middle Ear With Optical Coherence Tomography: A Feasibility Study

Author Affiliations

From the Research Laboratory of Electronics and the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (Drs Pitris and Fujimoto); Harvard Medical School, Boston, Mass (Drs Pitris and Brezinski); and Department of Orthopedics, Brigham and Women's Hospital, Boston (Ms Saunders and Dr Brezinski).

Arch Otolaryngol Head Neck Surg. 2001;127(6):637-642. doi:10.1001/archotol.127.6.637
Abstract

Background  Optical coherence tomography (OCT) is a new medical imaging technology that generates cross-sectional images of tissue microstructure with micron-scale resolution. Optical coherence tomography is analogous to ultrasound, measuring the intensity of infrared light rather than acoustical waves.

Objective  To demonstrate the feasibility of using OCT for ultra–high-resolution imaging of the middle ear via ex vivo imaging studies of human tissue.

Design  Images of the tympanic membrane and middle ear were acquired ex vivo, through the ear canal, without perforating the tympanic membrane.

Materials  Four excised intact temporal bones and the auditory apparatus were harvested from cadavers and imaged fresh, without previous fixation.

Results  The resulting images were compared with the gross sample and verified the ability of OCT to delineate relevant structures, such as the tympanic membrane and its sublayers, and the middle ear ossicles, nerves, and tendons at higher resolutions than possible with standard clinical imaging technologies.

Conclusion  The ability of OCT to produce high-resolution images of tissue structure, without contact and in real time, as well as its ability to be integrated with endoscopes, suggests that this technology could become a useful modality for the diagnosis and management of a range of clinical middle ear abnormalities.

×