Identification of Specific Gene Expression Profiles in Fibroblasts Derived From Middle Ear Cholesteatoma | Dermatology | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.157.140. Please contact the publisher to request reinstatement.
1.
Maas-Szabowski  NShimotoyodome  AFusenig  NE Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism.  J Cell Sci 1999;112(pt 12)1843- 1853PubMedGoogle Scholar
2.
Szabowski  AMaas-Szabowski  NAndrecht  S  et al.  c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin.  Cell 2000;103745- 755PubMedGoogle ScholarCrossref
3.
El Ghalbzouri  ALamme  EPonec  M Crucial role of fibroblasts in regulating epidermal morphogenesis.  Cell Tissue Res 2002;310189- 199PubMedGoogle ScholarCrossref
4.
El-Ghalbzouri  AGibbs  SLamme  EVan Blitterswijk  CAPonec  M Effect of fibroblasts on epidermal regeneration.  Br J Dermatol 2002;147230- 243PubMedGoogle ScholarCrossref
5.
Werner  SSmola  H Paracrine regulation of keratinocyte proliferation and differentiation.  Trends Cell Biol 2001;11143- 146PubMedGoogle ScholarCrossref
6.
Schilling  VNegri  BBujia  JSchulz  PKastenbauer  E Possible role of interleukin 1α and interleukin 1β in the pathogenesis of cholesteatoma of the middle ear.  Am J Otol 1992;13350- 355PubMedGoogle Scholar
7.
Chung  JWYoon  TH Different production of interleukin-1α, interleukin-1β and interleukin-8 from cholesteatomatous and normal epithelium.  Acta Otolaryngol 1998;118386- 391PubMedGoogle ScholarCrossref
8.
Yetiser  SSatar  BAydin  N Expression of epidermal growth factor, tumor necrosis factor-α, and interleukin-1α in chronic otitis media with or without cholesteatoma.  Otol Neurotol 2002;23647- 652PubMedGoogle ScholarCrossref
9.
Waterston  RHLindblad-Toh  KBirney  E  et al.  Initial sequencing and analysis of the human genome [published corrections appear in Nature. 2001;412:565 and Nature. 2001;411:720].  Nature 2001;409860- 921PubMedGoogle ScholarCrossref
10.
Drews  J Drug discovery: a historical perspective.  Science 2000;2871960- 1964PubMedGoogle ScholarCrossref
11.
Hopkins  ALGroom  CR The druggable genome.  Nat Rev Drug Discov 2002;1727- 730PubMedGoogle ScholarCrossref
12.
Iida  MMatsumoto  KTomita  H  et al.  Selective down-regulation of high-affinity IgE receptor (FcεRI) α-chain messenger RNA among transcriptome in cord blood–derived versus adult peripheral blood–derived cultured human mast cells.  Blood 2001;971016- 1022PubMedGoogle ScholarCrossref
13.
Brouty-Boye  DPottin-Clemenceau  CDoucet  CJasmin  CAzzarone  B Chemokines and CD40 expression in human fibroblasts.  Eur J Immunol 2000;30914- 919PubMedGoogle ScholarCrossref
14.
Hogaboam  CMSteinhauser  MLChensue  SWKunkel  SL Novel roles for chemokines and fibroblasts in interstitial fibrosis.  Kidney Int 1998;542152- 2159PubMedGoogle ScholarCrossref
15.
Pap  TMuller-Ladner  UGay  REGay  S Fibroblast biology.  Arthritis Res 2000;2361- 367PubMedGoogle ScholarCrossref
16.
Park  CCBissell  MJBarcellos-Hoff  MH The influence of the microenvironment on the malignant phenotype.  Mol Med Today 2000;6324- 329PubMedGoogle ScholarCrossref
17.
Silzle  TKreutz  MDobler  MABrockhoff  GKnuechel  RKunz-Schughart  LA Tumor-associated fibroblasts recruit blood monocytes into tumor tissue.  Eur J Immunol 2003;331311- 1320PubMedGoogle ScholarCrossref
18.
Smith  RSSmith  TJBlieden  TMPhipps  RP Fibroblasts as sentinel cells.  Am J Pathol 1997;151317- 322PubMedGoogle Scholar
19.
Silzle  TRandolph  GJKreutz  MKunz-Schughart  LA The fibroblast: sentinel cell and local immune modulator in tumor tissue.  Int J Cancer 2004;108173- 180PubMedGoogle ScholarCrossref
20.
Roth  MJohnson  PRBorger  P  et al.  Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells.  N Engl J Med 2004;351560- 574PubMedGoogle ScholarCrossref
21.
Sudhoff  HDazert  SGonzales  AM  et al.  Angiogenesis and angiogenic growth factors in middle ear cholesteatoma.  Am J Otol 2000;21793- 798PubMedGoogle Scholar
22.
Shiwa  MKojima  HMoriyama  H Expression of transforming growth factor-α (TGF-α) in cholesteatoma.  J Laryngol Otol 1998;112750- 754PubMedGoogle ScholarCrossref
23.
Tanaka  YShiwa  MKojima  HMiyazaki  HKamide  YMoriyama  H A study on epidermal proliferation ability in cholesteatoma.  Laryngoscope 1998;108537- 542PubMedGoogle ScholarCrossref
24.
Ergun  SZheng  XCarlsoo  B Expression of transforming growth factor-α and epidermal growth factor receptor in middle ear cholesteatoma.  Am J Otol 1996;17393- 396PubMedGoogle Scholar
25.
Schulz  PBujia  JHolly  AShilling  VKastenbauer  E Possible autocrine growth stimulation of cholesteatoma epithelium by transforming growth factor α.  Am J Otolaryngol 1993;1482- 87PubMedGoogle ScholarCrossref
26.
Toyoda  HKomurasaki  TUchida  D  et al.  Epireregulin: a novel epidermal growth factor with mitogenic activity for rat primary hepatocytes.  J Biol Chem 1995;2707495- 7500PubMedGoogle ScholarCrossref
27.
Shirakata  YKomurasaki  TToyoda  H  et al.  Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes.  J Biol Chem 2000;2755748- 5753PubMedGoogle ScholarCrossref
28.
Hashimoto  K Regulation of keratinocyte function by growth factors.  J Dermatol Sci 2000;24(suppl 1)S46- S50PubMedGoogle ScholarCrossref
29.
Greaves  DRWang  WDairaghi  DJ  et al.  CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells.  J Exp Med 1997;186837- 844PubMedGoogle ScholarCrossref
30.
Power  CAChurch  DJMeyer  A  et al.  Cloning and characterization of a specific receptor for the novel CC chemokine. MIP-3α from lung dendritic cells.  J Exp Med 1997;186825- 835PubMedGoogle ScholarCrossref
31.
Charbonnier  ASKohrgruber  NKriehuber  EStingl  GRot  AMaurer  D Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal Langerhans cells.  J Exp Med 1999;1901755- 1768PubMedGoogle ScholarCrossref
32.
Liao  FRabin  RLSmith  CSSharma  GNutman  TBFarber  JM CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3α.  J Immunol 1999;162186- 194PubMedGoogle Scholar
33.
Ruth  JHShahrara  SPark  CC  et al.  Role of macrophage inflammatory protein-3α and its ligand CCR6 in rheumatoid arthritis.  Lab Invest 2003;83579- 588PubMedGoogle ScholarCrossref
34.
Matsui  TAkahoshi  TNamai  R  et al.  Selective recruitment of CCR6-expressing cells by increased production of MIP-3α in rheumatoid arthritis.  Clin Exp Immunol 2001;125155- 161PubMedGoogle ScholarCrossref
35.
Akimoto  RPawankar  RYagi  TBaba  S Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin-1-alpha and lymphocyte functional antigen-1 in the inflammatory process.  ORL J Otorhinolaryngol Relat Spec 2000;62257- 265PubMedGoogle ScholarCrossref
36.
Shinoda  HHuang  CC Localization of intercellular adhesion molecule-1 in middle ear cholesteatoma.  Eur Arch Otorhinolaryngol 1995;252385- 390PubMedGoogle ScholarCrossref
37.
Bujia  JHolly  AKim  CScanady  NKastenbauer  E Expression of human intercellular adhesion molecules in middle ear cholesteatoma.  Am J Otolaryngol 1994;15271- 275PubMedGoogle ScholarCrossref
Original Article
July 2006

Identification of Specific Gene Expression Profiles in Fibroblasts Derived From Middle Ear Cholesteatoma

Author Affiliations

Author Affiliations: Department of Otorhinolaryngology, Jikei University School of Medicine (Drs Yoshikawa, Kojima, Wada, Tsukidate, and Moriyama), and Department of Allergy and Immunology, National Research Institute for Child Health and Development (Ms Okada and Dr Saito), Tokyo, Japan.

Arch Otolaryngol Head Neck Surg. 2006;132(7):734-742. doi:10.1001/archotol.132.7.734
Abstract

Objective  To investigate the role of fibroblasts in the pathogenesis of cholesteatoma.

Design  Tissue specimens were obtained from our patients. Middle ear cholesteatoma–derived fibroblasts (MECFs) and postauricular skin–derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1α and/or IL-1β before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs.

Subjects  Six patients who had undergone tympanoplasty.

Results  The IL-1α–regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor α) were more strongly up-regulated by IL-1α and/or IL-1β in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles.

Conclusions  Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

×