Aerodynamic Effects of Inferior Turbinate Reduction: Computational Fluid Dynamics Simulation | Facial Plastic Surgery | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Passali  DLauriello  MAnselmi  MBellussi  L Treatment of hypertrophy of the inferior turbinate: long-term results in 382 patients randomly assigned to therapy.  Ann Otol Rhinol Laryngol 1999;108569- 575PubMedGoogle Scholar
2.
Mabry  RL Surgery of the inferior turbinates: how much and when?  Otolaryngol Head Neck Surg 1984;92571- 576PubMedGoogle Scholar
3.
Friedman  MTanyeri  HLim  J  et al.  A safe, alternate technique for inferior turbinate reduction.  Laryngoscope 1999;1091834- 1837PubMedGoogle ScholarCrossref
4.
Fanous  N Anterior turbinectomy.  Arch Otolaryngol Head Neck Surg 1986;112850- 852PubMedGoogle ScholarCrossref
5.
Rakover  YRosen  G A comparison of partial inferior turbinectomy and cryosurgery for hypertrophic inferior turbinates.  J Laryngol Otol 1996;110732- 735PubMedGoogle Scholar
6.
Yanez  C New technique for turbinate reduction in chronic hypertrophic rhinitis: intraturbinate stroma removal using the microderider.  Operat Tech Otolaryngol Head Neck Surg 1998;9135- 137Google ScholarCrossref
7.
Ophir  D Inferior turbinectomy.  Operat Tech Otolaryngol Head Neck Surg 1991;2189- 193Google ScholarCrossref
8.
Talmon  YSamet  AGilbey  P Total inferior turbinectomy: operative results and technique.  Ann Otol Rhinol Laryngol 2000;1091117- 1119PubMedGoogle Scholar
9.
Cole  P Nasal patency and its measurement.  Am J Rhinol 1987;1135- 139Google ScholarCrossref
10.
Wight  RGJones  ASBeckingham  E Trimming of the inferior turbinates: a prospective long-term study.  Clin Otolaryngol 1990;15347- 350PubMedGoogle ScholarCrossref
11.
Hughes  WFBrighton  JA Mathematical models of fluid motion.  In:  Fluid Dynamics. New York, NY: McGraw-Hill; 1999:34-84Google Scholar
12.
Subramaniam  RRichardson  RMorgan  KKimbell  J Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx.  Inhal Toxicol 1998;1091- 120Google ScholarCrossref
13.
Elad  DLiebenthal  RWenig  BEinav  S Analysis of air flow patterns in the human nose.  Med Biol Eng Comput 1993;31585- 592PubMedGoogle ScholarCrossref
14.
Keyhani  KScherer  PMozell  M Numerical simulation of airflow in the human nasal cavity.  J Biomech Eng 1995;117429- 441PubMedGoogle ScholarCrossref
15.
Kelly  JPrasad  AWexler  A Detailed flow patterns in the nasal cavity.  J Appl Physiol 2000;89323- 337PubMedGoogle Scholar
16.
Hahn  IScherer  PWMozell  MM Velocity profiles measured for airflow through a large-scale model of the human nasal cavity.  J Appl Physiol 1993;752273- 2287PubMedGoogle Scholar
17.
Weinhold  IMlynski  G Numerical simulation of airflow in the human nose.  Eur Arch Otorhinolaryngol 2004;261452- 455PubMedGoogle ScholarCrossref
18.
Horschler  IMeinke  MSchroder  W Numerical simulation of the flow field in a model of the nasal cavity.  Comput Fluids 2003;3239- 45Google ScholarCrossref
19.
Bockholt  UMlynski  GMuller  WVoss  G Rhinosurgical therapy planning via endonasal airflow simulation.  Comput Aided Surg 2000;5175- 179PubMedGoogle ScholarCrossref
20.
Guilmette  AGagliano  TJ Construction of a model of human nasal airways using in vivo morphometric data.  Ann Occup Hyg 1994;38(suppl 1)69- 75Google ScholarCrossref
21.
Batchelor  GK An Introduction to Fluid Dynamics.  Cambridge, England: Cambridge University Press; 1967
22.
Wexler  DBDavidson  TM The nasal valve: a review of the anatomy, imaging and physiology.  Am J Rhinol 2004;18143- 150PubMedGoogle Scholar
23.
Cole  P Nasal airflow resistance: a survey of 2500 assessments.  Am J Rhinol 1997;11415- 420PubMedGoogle ScholarCrossref
24.
Schreck  SSullivan  KJHo  CMChang  HK Correlations between flow resistance and geometry in a model of the human nose.  J Appl Physiol 1993;751767- 1775PubMedGoogle Scholar
25.
Swift  D Physical principles of airflow and transport phenomena influencing air modification.  In: Proctor  DF, Andersen  I, eds.  The Nose, Upper Airway Physiology and the Atmospheric Environment. Amsterdam, the Netherlands: Elsevier Biomedical Press; 1982Google Scholar
Original Article
December 2005

Aerodynamic Effects of Inferior Turbinate Reduction: Computational Fluid Dynamics Simulation

Author Affiliations

Author Affiliations: Division of Otolaryngology, Fallon Clinic, Worcester, Mass (Dr Wexler); and CIIT Centers for Health Research, Research Triangle Park, NC (Drs Segal and Kimbell).

Arch Otolaryngol Head Neck Surg. 2005;131(12):1102-1107. doi:10.1001/archotol.131.12.1102
Abstract

Objective  To investigate the aerodynamic consequences of conservative unilateral inferior turbinate reduction using computational fluid dynamics methods to accomplish detailed nasal airflow simulations.

Design  A high-resolution, finite-element mesh of the nasal airway was constructed from magnetic resonance imaging data of a healthy man. Steady-state, inspiratory airflow simulations were conducted at 15 L/min using the techniques of computational fluid dynamics

Intervention  Circumferential removal of 2 mm of soft tissue bulk along the length of the left inferior turbinate was modeled.

Main Outcome Measures  Nasal airflow distribution and pressure profiles were computed before and after simulated left inferior turbinate reduction.

Results  Simulated inferior turbinate reduction resulted in a broad reduction of pressure along the nasal airway, including the regions distant from the inferior turbinate vicinity. In contrast, relative airflow changes were regional: airflow was minimally affected in the valve region, increased in the lower portion of the middle and posterior nose, and decreased dorsally.

Conclusion  Use of computational fluid dynamics methods should help elucidate the aerodynamic significance of specific surgical interventions and refine surgical approaches to the nasal airway.

×