Association of Temporal Changes in Gestational Age With Perinatal Mortality in the United States, 2007-2015 | Neonatology | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Blencowe  H, Cousens  S, Oestergaard  MZ,  et al.  National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications.  Lancet. 2012;379(9832):2162-2172.PubMedGoogle ScholarCrossref
2.
Chang  HH, Larson  J, Blencowe  H,  et al; Born Too Soon preterm prevention analysis group.  Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index.  Lancet. 2013;381(9862):223-234.PubMedGoogle ScholarCrossref
3.
Lawn  JE, Cousens  S, Zupan  J; Lancet Neonatal Survival Steering Team.  4 Million neonatal deaths: when? where? why?  Lancet. 2005;365(9462):891-900.PubMedGoogle ScholarCrossref
4.
Blencowe  H, Cousens  S, Chou  D,  et al; Born Too Soon Preterm Birth Action Group.  Born too soon: the global epidemiology of 15 million preterm births.  Reprod Health. 2013;10(suppl 1):S2.PubMedGoogle ScholarCrossref
5.
Requejo  J, Merialdi  M, Althabe  F, Keller  M, Katz  J, Menon  R.  Born too soon: care during pregnancy and childbirth to reduce preterm deliveries and improve health outcomes of the preterm baby.  Reprod Health. 2013;10(suppl 1):S4.PubMedGoogle ScholarCrossref
6.
Hibbard  JU, Wilkins  I, Sun  L,  et al; Consortium on Safe Labor.  Respiratory morbidity in late preterm births.  JAMA. 2010;304(4):419-425.PubMedGoogle ScholarCrossref
7.
Reddy  UM, Ko  CW, Raju  TN, Willinger  M.  Delivery indications at late-preterm gestations and infant mortality rates in the United States.  Pediatrics. 2009;124(1):234-240.PubMedGoogle ScholarCrossref
8.
Manuck  TA, Rice  MM, Bailit  JL,  et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network.  Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort.  Am J Obstet Gynecol. 2016;215(1):103.e1-103.e14.PubMedGoogle ScholarCrossref
9.
Moster  D, Lie  RT, Markestad  T.  Long-term medical and social consequences of preterm birth.  N Engl J Med. 2008;359(3):262-273.PubMedGoogle ScholarCrossref
10.
Petrini  JR, Dias  T, McCormick  MC, Massolo  ML, Green  NS, Escobar  GJ.  Increased risk of adverse neurological development for late preterm infants.  J Pediatr. 2009;154(2):169-176.PubMedGoogle ScholarCrossref
11.
Romeo  DM, Di Stefano  A, Conversano  M,  et al.  Neurodevelopmental outcome at 12 and 18 months in late preterm infants.  Eur J Paediatr Neurol. 2010;14(6):503-507.PubMedGoogle ScholarCrossref
12.
Lipkind  HS, Slopen  ME, Pfeiffer  MR, McVeigh  KH.  School-age outcomes of late preterm infants in New York City.  Am J Obstet Gynecol. 2012;206(3):222.e1-222.e6.PubMedGoogle ScholarCrossref
13.
Tita  AT, Landon  MB, Spong  CY,  et al; Eunice Kennedy Shriver NICHD Maternal-Fetal Medicine Units Network.  Timing of elective repeat Cesarean delivery at term and neonatal outcomes.  N Engl J Med. 2009;360(2):111-120.PubMedGoogle ScholarCrossref
14.
Shapiro-Mendoza  CK, Tomashek  KM, Kotelchuck  M,  et al.  Effect of late-preterm birth and maternal medical conditions on newborn morbidity risk.  Pediatrics. 2008;121(2):e223-e232.PubMedGoogle ScholarCrossref
15.
Boyle  EM, Poulsen  G, Field  DJ,  et al.  Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study.  BMJ. 2012;344:e896.PubMedGoogle ScholarCrossref
16.
Crump  C, Sundquist  K, Winkleby  MA, Sundquist  J.  Early-term birth (37-38 weeks) and mortality in young adulthood.  Epidemiology. 2013;24(2):270-276.PubMedGoogle ScholarCrossref
17.
Gyamfi-Bannerman  C, Ananth  CV.  Trends in spontaneous and indicated preterm delivery among singleton gestations in the United States, 2005-2012.  Obstet Gynecol. 2014;124(6):1069-1074.PubMedGoogle ScholarCrossref
18.
Richards  JL, Kramer  MS, Deb-Rinker  P,  et al.  Temporal trends in late preterm and early term birth rates in 6 high-income countries in North America and Europe and association with clinician-initiated obstetric interventions.  JAMA. 2016;316(4):410-419.PubMedGoogle ScholarCrossref
19.
Dietz  PM, Rizzo  JH, England  LJ,  et al.  Early term delivery and health care utilization in the first year of life.  J Pediatr. 2012;161(2):234-9.e1.PubMedGoogle ScholarCrossref
20.
Zeitlin  J, Szamotulska  K, Drewniak  N,  et al; Euro-Peristat Preterm Study Group.  Preterm birth time trends in Europe: a study of 19 countries.  BJOG. 2013;120(11):1356-1365.PubMedGoogle ScholarCrossref
21.
Schaaf  JM, Mol  BW, Abu-Hanna  A, Ravelli  AC.  Trends in preterm birth: singleton and multiple pregnancies in the Netherlands, 2000-2007.  BJOG. 2011;118(10):1196-1204.PubMedGoogle ScholarCrossref
22.
Martin  JA, Hamilton  BE, Osterman  MJ, Driscoll  AK, Mathews  TJ.  Births: final data for 2015.  Natl Vital Stat Rep. 2017;66(1):1.PubMedGoogle Scholar
23.
Lawn  JE, Blencowe  H, Oza  S,  et al; Lancet Every Newborn Study Group.  Every Newborn: progress, priorities, and potential beyond survival.  Lancet. 2014;384(9938):189-205.PubMedGoogle ScholarCrossref
24.
Joseph  KS.  Theory of obstetrics: an epidemiologic framework for justifying medically indicated early delivery.  BMC Pregnancy Childbirth. 2007;7:4.PubMedGoogle ScholarCrossref
25.
Martin  JA, Osterman  MJ, Kirmeyer  SE, Gregory  EC.  Measuring gestational age in vital statistics data: transitioning to the obstetric estimate.  Natl Vital Stat Rep. 2015;64(5):1-20.PubMedGoogle Scholar
26.
Spong  CY.  Defining “term” pregnancy: recommendations from the Defining “Term” Pregnancy workgroup.  JAMA. 2013;309(23):2445-2446.PubMedGoogle ScholarCrossref
27.
Durrleman  S, Simon  R.  Flexible regression models with cubic splines.  Stat Med. 1989;8(5):551-561.PubMedGoogle ScholarCrossref
28.
Hertzmark  E, Li  R, Hong  B, Spiegelman  D. %glmcurv9. https://www.hsph.harvard.edu/donna-spiegelman/software/glmcurv9/. October 28, 2014. Accessed January 22, 2018.
29.
Goldenberg  RL, Culhane  JF, Iams  JD, Romero  R.  Epidemiology and causes of preterm birth.  Lancet. 2008;371(9606):75-84.PubMedGoogle ScholarCrossref
30.
Howell  EA, Janevic  T, Hebert  PL, Egorova  NN, Balbierz  A, Zeitlin  J.  Differences in morbidity and mortality rates in black, white, and Hispanic very preterm infants among New York City hospitals [published online January 2, 2018].  JAMA Pediatr. doi:10.1001/jamapediatrics.2017.4402PubMedGoogle Scholar
31.
Kitagawa  E.  Components of a difference between two rates.  J Am Stat Assoc. 1955;50(272):1169-1194.Google Scholar
32.
Horbar  JD, Edwards  EM, Greenberg  LT,  et al.  Variation in performance of neonatal intensive care units in the United States.  JAMA Pediatr. 2017;171(3):e164396.PubMedGoogle ScholarCrossref
33.
American College of Obstetricians and Gynecologists.  ACOG committee opinion no. 561: nonmedically indicated early-term deliveries.  Obstet Gynecol. 2013;121(4):911-915.PubMedGoogle ScholarCrossref
34.
Oshiro  BT, Kowalewski  L, Sappenfield  W,  et al.  A multistate quality improvement program to decrease elective deliveries before 39 weeks of gestation.  Obstet Gynecol. 2013;121(5):1025-1031.PubMedGoogle ScholarCrossref
35.
Schoen  CN, Tabbah  S, Iams  JD, Caughey  AB, Berghella  V.  Why the United States preterm birth rate is declining.  Am J Obstet Gynecol. 2015;213(2):175-180.PubMedGoogle ScholarCrossref
36.
Ananth  CV.  Ischemic placental disease: a unifying concept for preeclampsia, intrauterine growth restriction, and placental abruption.  Semin Perinatol. 2014;38(3):131-132.PubMedGoogle ScholarCrossref
37.
Ananth  CV, Friedman  AM.  Ischemic placental disease and risks of perinatal mortality and morbidity and neurodevelopmental outcomes.  Semin Perinatol. 2014;38(3):151-158.PubMedGoogle ScholarCrossref
38.
Roberge  S, Nicolaides  K, Demers  S, Hyett  J, Chaillet  N, Bujold  E.  The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis.  Am J Obstet Gynecol. 2017;216(2):110-120.e6.PubMedGoogle Scholar
39.
Joseph  KS, Demissie  K, Kramer  MS.  Obstetric intervention, stillbirth, and preterm birth.  Semin Perinatol. 2002;26(4):250-259.PubMedGoogle ScholarCrossref
40.
Callaghan  WM, MacDorman  MF, Shapiro-Mendoza  CK, Barfield  WD.  Explaining the recent decrease in US infant mortality rate, 2007-2013.  Am J Obstet Gynecol. 2017;216(1):73.e1-73.e8.PubMedGoogle ScholarCrossref
41.
Dietz  PM, Bombard  JM, Hutchings  YL,  et al.  Validation of obstetric estimate of gestational age on US birth certificates.  Am J Obstet Gynecol. 2014;210(4):335.e1-335.e5.PubMedGoogle ScholarCrossref
42.
Lisonkova  S, Sabr  Y, Butler  B, Joseph  KS.  International comparisons of preterm birth: higher rates of late preterm birth are associated with lower rates of stillbirth and neonatal death.  BJOG. 2012;119(13):1630-1639.PubMedGoogle ScholarCrossref
43.
Goyal  NK, DeFranco  E, Kamath-Rayne  BD, Beck  AF, Hall  ES.  County-level variation in infant mortality reporting at early previable gestational ages.  Paediatr Perinat Epidemiol. 2017;31(5):385-391.PubMedGoogle ScholarCrossref
44.
Joseph  KS, Liu  S, Rouleau  J,  et al; Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System.  Influence of definition based versus pragmatic birth registration on international comparisons of perinatal and infant mortality: population based retrospective study.  BMJ. 2012;344:e746.PubMedGoogle ScholarCrossref
45.
Smith  LK.  Ensuring the comparability of infant mortality rates: the impact of the management of pre-viable and peri-viable births.  Paediatr Perinat Epidemiol. 2017;31(5):392-393.PubMedGoogle ScholarCrossref
46.
Martin  JA, Wilson  EC, Osterman  MJ, Saadi  EW, Sutton  SR, Hamilton  BE.  Assessing the quality of medical and health data from the 2003 birth certificate revision: results from two states.  Natl Vital Stat Rep. 2013;62(2):1-19.PubMedGoogle Scholar
47.
Ananth  CV, Vintzileos  AM.  Maternal-fetal conditions necessitating a medical intervention resulting in preterm birth.  Am J Obstet Gynecol. 2006;195(6):1557-1563.PubMedGoogle ScholarCrossref
48.
Metcalfe  A, Lisonkova  S, Joseph  KS.  The association between temporal changes in the use of obstetrical intervention and small-for-gestational age live births.  BMC Pregnancy Childbirth. 2015;15:233.PubMedGoogle ScholarCrossref
Original Investigation
July 2018

Association of Temporal Changes in Gestational Age With Perinatal Mortality in the United States, 2007-2015

Author Affiliations
  • 1Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, New York
  • 2Department of Health Policy and Management, Joseph L. Mailman School of Public Health, Columbia University, New York, New York
  • 3Department of Obstetrics and Gynecology, New York University–Winthrop University Hospital, Mineola
JAMA Pediatr. 2018;172(7):627-634. doi:10.1001/jamapediatrics.2018.0249
Key Points

Question  Are changes in the gestational age distribution associated with changes in perinatal mortality?

Findings  In this cohort study of 34 236 577 US singleton births, births at all gestational ages except 39 to 40 weeks decreased from 2007 to 2015; an overall decrease in perinatal mortality rates was attributable to changes in gestational age distribution rather than gestational age–specific mortality. Although the proportion of births at gestational ages 34 to 36, 37 to 38, and 42 to 44 weeks decreased, perinatal mortality at these gestational ages increased.

Meanings  Increased perinatal mortality in some gestational age groups may be associated with lower-risk pregnancies in which neonates are delivered preferentially at 39 to 40 weeks, leaving fetuses at higher risk for mortality at other gestational ages.

Abstract

Importance  Whether the changing gestational age distribution in the United States since 2005 has affected perinatal mortality remains unknown.

Objective  To examine changes in gestational age distribution and gestational age–specific perinatal mortality.

Design, Setting, and Participants  This retrospective cohort study examined trends in US perinatal mortality by linking live birth and infant death data among more than 35 million singleton births from January 1, 2007, through December 31, 2015.

Exposures  Year of birth and changes in gestational age distribution.

Main Outcomes and Measures  Changes in the proportion of births at gestational ages 20 to 27, 28 to 31, 32 to 33, 34 to 36, 37 to 38, 39 to 40, 41, and 42 to 44 weeks; changes in perinatal mortality (stillbirth at ≥20 weeks, and neonatal deaths at <28 days) rates; and contribution of gestational age changes to perinatal mortality. Trends were estimated from log-linear regression models adjusted for confounders.

Results  Among the 34 236 577 singleton live births during the study period, the proportion of births at all gestational ages declined, except at 39 to 40 weeks, which increased (54.5% in 2007 to 60.2% in 2015). Overall perinatal mortality declined from 9.0 to 8.6 per 1000 births (P < .001). Stillbirths declined from 5.7 to 5.6 per 1000 births (P < .001), and neonatal mortality declined from 3.3 to 3.0 per 1000 births (P < .001). Although the proportion of births at gestational ages 34 to 36, 37 to 38, and 42 to 44 weeks declined, perinatal mortality rates at these gestational ages showed annual adjusted relative increases of 1.0% (95% CI, 0.6%-1.4%), 2.3% (95% CI, 1.9%-2.8%), and 4.2% (95% CI, 1.5%-7.0%), respectively. Neonatal mortality rates at gestational ages 34 to 36 and 37 to 38 weeks showed a relative adjusted annual increase of 0.9% (95% CI, 0.2%-1.6%) and 3.1% (95% CI, 2.1%-4.1%), respectively. Although the proportion of births at gestational age 39 to 40 weeks increased, perinatal mortality showed an annual relative adjusted decline of −1.3% (95% CI, −1.8% to −0.9%). The decline in neonatal mortality rate was largely attributable to changes in the gestational age distribution than to gestational age–specific mortality.

Conclusions and Relevance  Although the proportion of births at gestational age 39 to 40 weeks increased, perinatal mortality at this gestational age declined. This finding may be owing to pregnancies delivered at 39 to 40 weeks that previously would have been unnecessarily delivered earlier, leaving fetuses at higher risk for mortality at other gestational ages.

×