Conclusions | We found that preterm born infants with either high or low placental weight had an increased risk of neonatal death. In term-born infants, low placental weight was associated with an increase in the risk of neonatal death among infants with congenital malformations. These findings may help to identify infants at increased risk of neonatal death.

Johanne Dypvik, MD, PhD
Sandra Larsen, MD
Camilla Haavaldsen, MD, PhD
Ola Didrik Saugstad, MD, PhD
Anne Eskild, MD, PhD

Author Affiliations: Department of Obstetrics and Gynecology, Akershus University Hospital, Lørenskog, Norway (Dypvik, Larsen, Haavaldsen, Eskild); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (Dypvik, Larsen, Eskild); Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway (Saugstad).

Corresponding Author: Johanne Dypvik, MD, PhD, Department of Obstetrics and Gynecology, Akershus University Hospital, PO Box 1000, 1478 Lørenskog, Norway (johanne.dypvik@medisin.uio.no).

Published Online: December 2, 2019. doi:10.1001/jamapediatrics.2019.4556

Author Contributions: Drs Dypvik and Eskild had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Dypvik, Haavaldsen, Eskild.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Dypvik, Eskild.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Dypvik, Haavaldsen.

Funding/Support: The study received funding from grant 272901 from the South-Eastern Norway Regional Health Authority during the conduct of the study. No other disclosures were reported.

Role of the Funder/Sponsor: The study received funding from grant 272901 from the South-Eastern Norway Regional Health Authorities of Norway.

Methods | This retrospective cohort study was conducted with a previously collected cohort of 798 426 children who were Department of Defense Tricare beneficiaries. These children had a birth medical record in the Military Health System database between October 1, 2001, and September 30, 2013, with continued enrollment from 35 days of age or younger until at least 1 year of age. Children with an initial birth stay in the hospital of more than 7 days or a diagnosis with an outcome allergic condition within the first 6 months of life were excluded. Exposures were defined as having any dispensed prescription for penicillin, penicillin with a β-lactamase inhibitor, cephalosporin, sulfonamide, or macrolide in the first 6 months of life.

The main outcomes were the presence of any allergic disease, food allergy, anaphylaxis, asthma, atopic dermatitis, allergic rhinitis, allergic conjunctivitis, or contact dermatitis. Cox proportional hazards modeling was performed. The first model used exposure to specific classes of antibiotics to analyze the development of any allergic disease. The second model used antibiotic classes as an ordinal variable representing the number of antibiotic classes prescribed in the first 6 months. Adjusted hazard ratios represented the association of an increase in the number of classes of antibiotic with each of the outcomes. Models were adjusted for cesarean delivery, prematurity, sex, antacid medication exposure (proton pump inhibitors or histamine-2 receptor antagonists), and total days of supplied antibiotics. The study was reviewed and approved by the institutional review board of the Uniformed Services University, with a waiver of informed consent because data were deidentified. Analyses were conducted using SAS, version 9.4 (SAS Institute Inc), and 2-tailed P values less than .05 were considered significant. Data were collected from October 1, 2001, to September 30, 2013. Data analysis occurred from February 19, 2019 to May 2019.

Results | Among the 798 426 children in the cohort (including 400 323 male children [50.1%]), there were 162 605 filled prescriptions for antibiotics (penicillin, 96 793 prescriptions [59.5%]; macrolide, 21 347 prescriptions [13.1%]; cephalosporin, 21 284 prescriptions [13.1%]; penicillin with β-lactamase inhibitor, 15 811 prescriptions [9.7%]; sulfonamides, 6212 prescriptions [3.8%]). There were 664 710 children (83.3%) prescribed no classes of antibiotic, 109 341 children (13.7%) prescribed 1 class, 20 358 (2.5%) prescribed 2 classes, 3543 (0.44%) prescribed 3 classes, and 474 children (0.06%) prescribed 4 or more classes of antibiotics during the first 6 months of life. Data for children in the cohort were available for a median of 4.6 (interquartile range, 2.5-7.9) years.

All types of antibiotic classes assessed were associated with significant increased adjusted hazard ratios (aHRs) for any outcome allergic disease (Table I). The aHRs were lowest for sulfonamides (1.06 [95% CI, 1.03-1.10]) and 1.19 or greater for all categories of antibiotic in infancy and Allergic Disease in Childhood

Antibiotic administration negatively affects the microbiome by decreasing bacterial diversity, and this has been associated with allergic disease. Exposure to multiple classes of antibiotics may lead to even greater perturbations to the gut biome than 1 class alone. The purpose of this study is to determine whether exposure to multiple antibiotic classes in infancy is associated with a higher risk of developing allergic disease in early childhood.

Association Between Use of Multiple Classes of Antibiotic in Infancy and Allergic Disease in Childhood

Antibiotic administration negatively affects the microbiome by decreasing bacterial diversity, and this has been associated with allergic disease. Exposure to multiple classes of antibiotics may lead to even greater perturbations to the gut biome than 1 class alone. The purpose of this study is to determine whether exposure to multiple antibiotic classes in infancy is associated with a higher risk of developing allergic disease in early childhood.
Table 1. Adjusted Hazard Ratios for Any Parameter Allergic Disease in Children Exposed to a Specific Class of Antibiotic

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>Adjusted Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>1.30 (1.28-1.31)</td>
</tr>
<tr>
<td>Penicillin with β-lactamase inhibitor</td>
<td>1.21 (1.18-1.23)</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>1.19 (1.17-1.21)</td>
</tr>
<tr>
<td>Sulfonamide</td>
<td>1.06 (1.03-1.10)</td>
</tr>
<tr>
<td>Macrolide</td>
<td>1.28 (1.26-1.30)</td>
</tr>
</tbody>
</table>

* Parameter allergic diseases include any food allergy, anaphylaxis, asthma, atopic dermatitis, allergic rhinitis, allergic conjunctivitis, and contact dermatitis.

Table 2. Adjusted Hazard Ratios for Allergic Diseases in Children Given 1 Additional Class of Antibiotic During Infancy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Adjusted Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any food allergy</td>
<td>1.08 (1.05-1.11)</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>1.08 (1.02-1.15)</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.47 (1.45-1.49)</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>1.13 (1.11-1.15)</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>1.33 (1.32-1.34)</td>
</tr>
<tr>
<td>Allergic conjunctivitis</td>
<td>1.18 (1.15-1.22)</td>
</tr>
<tr>
<td>Contact dermatitis</td>
<td>1.11 (1.10-1.12)</td>
</tr>
</tbody>
</table>

* Models were adjusted for cesarean delivery, prematurity, sex, antacid medication exposure (proton pump inhibitors or histamine-2 receptor antagonists), and total days of supplied antibiotics.

Discussion | This study found that all commonly prescribed antibiotics during infancy are associated with subsequent diagnosis of allergic disease. Administration of more than 1 class of antibiotic was associated with increased risk, most notably for asthma and allergic rhinitis. This association persisted even after adjusting for the total days of antibiotic prescribed (data not shown).

A limitation of this study is the potential reverse causality of infants at increased risk of developing allergic disease also being more susceptible to bacterial illness and thus requiring additional classes of antibiotic administration. While this bias may have played a role, it is unlikely because of our model adjustment for cesarean delivery, prematurity, sex, antacid medication exposure, and total days of supplied antibiotics.

Exposure to multiple antibiotic classes may cause broader diversity perturbations to the microbiome. Thus, perturbation of the microbiome may be a risk factor for the development of allergic disease.

Neonatal Abstinence Syndrome Incidence and Health Care Costs in the United States, 2016

Neonatal abstinence syndrome (NAS) is a withdrawal syndrome primarily occurring in infants with in utero exposure to opioids. Neonatal abstinence syndrome is an important indicator of the immediate effect of the opioid crisis. Little is known about the physical and developmental health consequences of prenatal opioid exposure.1 Neonatal abstinence syndrome incidence rates have increased from 1.5 to 8.0 per 1000 hospital births in the United States from 2004 to 2014.2 Total hospital costs reached $316 million in 2012 and accounted for 4% of all neonatal intensive care unit hospital days nationwide in 2013.3,4 This study provides new national incidence and cost estimates for NAS in 2016.

Methods | The study data came from the 2016 Healthcare Cost and Utilization Project (HCUP) Kids' Inpatient Database (KID), a nationally representative sample of all-payer pediatric discharges. We used the KID variable for in-hospital birth (I10_HOSP BIRTH) to identify in-hospital births, which were defined as those with a primary/secondary diagnosis of live birth and no indication of birth outside the hospital or transfer from another hospital. Hospitalizations for infants born with NAS were identified using the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) code P96.1 in any diagnosis field. We converted hospital charges to

Sidney E. Zven, BSCE
Apryl Susi, MS
Edward Mitre, MD
Cade M. Nylund, MD

Author Affiliations: F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Zven); Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Susi, Nylund); Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Mitre).

Corresponding Author: Sidney E. Zven, BSCE, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814 (sidney.zven@usuhs.edu).

Published Online: December 20, 2019. doi:10.1001/jamapediatrics.2019.4794

Conflict of Interest Disclosures: None reported.

Disclaimer: The opinions and assertions expressed herein are those of the authors and do not necessarily reflect the official policy or position of the US Air Force, Uniformed Services University, or the Department of Defense.

