The visual search task was administered at 18 months and 3.5 years (Tobii TX300 eye tracker with 120-Hz tracking, 60-cm distance, 5-point calibration). Arrays were presented (single feature [target red apple among blue apples; set sizes 5 and 9] or conjunction [target red apple among blue apples and slices of red apples; set sizes 5, 9, and 13; only set sizes matched across conditions were analyzed, ie, 5 and 9] for 4 seconds or until the target was fixated. Trials were presented continuously, grouped into blocks: (1) 3 single feature, fixed order; (2) 1 single feature, 9 conjunction, randomized; and (3) 4 single feature, 9 conjunction, randomized. P values were 2-sided and were significant at less than .05. SPSS version 24.0.0.1 (SPSS Inc) was used. Analysis began November 2018 and ended in November 2019.

Results | Of 56 infants recruited, 49 were followed up longitudinally at 18 months and 46 were followed up at 3.5 years. Data quality and accuracy did not differ significantly across groups. Linear generalized estimating equations for saccadic reaction time (SRT) (Figure) were run with an unstructured correlation matrix (deviation from preregistered 3.5-year analysis of variance; https://osf.io/fxu7y) to include missing data and treat group as a time-varying predictor (some children changed user groups over time; usage correlations: 12 to 18 months, Spearman \(r_s = 0.78; \) 18 months to 3.5 years, Spearman \(r_s = 0.33; \) 12 months to 3.5 years, Spearman \(r_s = 0.31)."

User groups did not differ significantly in conjunction SRTs, but high users were faster than low users in single-feature trials (Table). Post hoc analyses showed faster SRTs for high users vs low users in block 1 single-feature trials (Bonferroni-corrected \(P = .003; \) mean difference = 360 milliseconds; SE = 104 milliseconds) with no group difference in remaining single trials (Bonferroni-corrected \(P = .75, \) mean difference = 118 milliseconds, SE = 77 milliseconds).

Follow-up multiple regressions tested the specificity of concurrent vs longitudinal associations. At 18 months, duration of concurrent use was associated with single-feature SRT (\(\beta = -0.62; \) \(P = .03)\), over and above 12-month usage (\(\beta = 0.48; \) \(P = .09). \) At 3.5 years, concurrent use was margin-

Figure | Visual Search Reaction Times (SRTs)

A 18 mo

B 3.5 y

Shaded areas represent standard error of the mean.

Toddlers’ fine motor milestone achievement is associated with early plasticity and training-induced learning. 3

Kaldy Z, Kasper C, Carter AS, Blaser E. Toddlers with autism spectrum disorder are more successful at visual search than typically developing toddlers. 6

Critical revision of the manuscript for important intellectual content: de Urabain, PhD, from Birkbeck, University of London for their work on inspiration and champion. Thanks also to Luke Mason, PhD, and Irati Saez late Annette Karmiloff-Smith, PhD (Birkbeck, University of London), was a huge inspiration and champion. Thanks also to Luke Mason, PhD, and Irati Saez de Urabain, PhD, from Birkbeck, University of London for their work on programming and implementing the paradigms. No compensation was provided.

Discussion | Toddler touch screen use is associated with faster single feature but not conjunction search, indicative of greater saliency-driven attention without impaired endogenous control. Results are specific to concurrent usage, suggesting recent touch screen experience may prime attention for exogenous control. Faster high-user SRTs in block 1 suggests a possible saliency bias coming into the task, rather than faster within-task learning. The real-world consequences, particularly when saliency and endogenous goals conflict (eg, focusing on schoolwork in a busy classroom), remain to be established. Future studies should use objective tracking of the child’s complex media environment to assess the specificity across platforms, content, and type of use, as well as establish whether touch screen use has a causal influence on attention control.

Ana Maria Portugal, PhD
Teodora Gliga, PhD
Rachael Bedford, PhD
Celeste H. M. Cheung, PhD

Funding/Support: The TABLET Project was funded by a Philip Leverhulme Prize (PLP-2013–028) to Dr Smith. Dr Portugal was supported by an Economic and Social Research Council studentship. Dr Bedford was supported by a Sir Henry Wellcome Postdoctoral Fellowship and King’s Prize Fellowship (204823/Z/16/Z).

Role of the Funder/Sponsor: No funders had a role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Addtional Contribution: We are very grateful to all the families who took part in the TABLET study. During this project’s inception and initial execution, the late Annette Karmiloff-Smith, PhD (Birkbeck, University of London), was a huge inspiration and champion. Thanks also to Luke Mason, PhD, and Irati Saez de Urabain, PhD, from Birkbeck, University of London for their work on programming and implementing the paradigms. No compensation was provided.

Intention to Quit Vaping Among United States Adolescents

In 2019, 25.2% of high school students in the US reported current use (ie, past 30 days) and 11.7% reported daily use of electronic nicotine products (ie, e-cigarettes, vaping). Adolescents who vape are at risk for nicotine addiction, toxicant

© 2020 American Medical Association. All rights reserved.