such as having developed chorioamnionitis or going into labor prematurely. Although this would identify a proportion of infants who need aminoglycoside therapy, it would also miss many infants who need antibiotic therapy for other indications. Conversely, many mothers whose infants did not go on to receive aminoglycosides would be tested for the variant, impacting the cost-effectiveness of this intervention. Furthermore, in many scenarios in which an admission to a neonatal intensive care unit is anticipated, the m.1555A>G result would still be required rapidly. If a mother entered labor prematurely, a standard test time of several days remains unacceptable. As such, rapid genotyping would still be required.

The second suggestion is that specimens from expectant mothers could be stored prospectively, and testing performed as required. As well as being subject to the issues of cost and speed outlined above, this approach would also be enormously complex. In 2019, there were 3,747,540 births in the US. Storing, accessing, and testing even a small proportion of these samples would be a major logistical challenge, the costs of which would dwarf those required for deployment of a rapid POC in neonatal intensive care units.

Finally, the authors identify that many direct-to-consumer genetic tests include m.1555A>G. If a mother had such a test prior to delivery, then this could be used to inform antibiotic selection if their infant were admitted to the neonatal intensive care unit. Again, this is reasonable in theory, but in addition to concerns raised by the authors regarding analytical validity, implementation would be extremely challenging. In this hypothetical scenario, the infant and possibly the mother are acutely unwell. The mother cannot, and should not, be expected to inform clinicians of her direct-to-consumer genetic test results. As such, there would need to be an informative solution that could capture the mother’s m.1555A>G result during pregnancy and transfer that to the infant’s new electronic health record immediately after birth. Even the most advanced pharmacogenetic programs do not yet have this level of functionality.

The neonatal intensive care unit is an intensely challenging setting in which to implement pharmacogenetic testing. As genetic testing becomes ubiquitous, harnessing parental genetic information may provide a parallel approach to m.1555A>G genotyping. However, this is not the current reality and rapid POC genotyping is the only approach that could be reliably deployed at present.

John H. McDermott, MD, MRes
William G. Newman, MD, PhD

Author Affiliations: Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom.

Corresponding Authors: John H. McDermott, MD, MRes (john.mcdermott@mft.nhs.uk), and William G. Newman, MD, PhD (william.newman@manchester.ac.uk), Manchester Centre for Genomic Medicine, Manchester University Hospitals National Health Service Foundation Trust, Manchester M13 9WL, United Kingdom.

Published Online: June 21, 2022. doi:10.1001/jamapediatrics.2022.2062

Conflict of Interest Disclosures: Dr McDermott and Prof Newman report grants from the National Institute for Health Research. No other disclosures were reported.


CORRECTION

Errors in Byline and Figure 2: In the Original Investigation titled “Reassessment of the Role of Race in Calculating the Risk for Urinary Tract Infection: A Systematic Review and Meta-analysis,” published online April 18, 2022, the second author’s middle initial was missing and the reference citations in Figure 2 were incorrect. The second author’s name has been corrected to Matthew C. Lee, BA, and the reference citations in Figure 2 have been updated. This article was corrected online.


Error in Author’s Name: In the Original Investigation titled “Childhood Asthma Incidence, Early and Persistent Wheeze, and Neighborhood Socioeconomic Factors in the ECHO/CREW Consortium,” published online May 23, 2022, an author’s name contained errors in the byline and contributions section. The author’s name has been corrected to Eneida A. Mendonça, MD, PhD. This article was corrected online.


Errors in the Byline: In the Original Investigation titled “Association Between Screen Time Trajectory and Early Childhood Development in Children in China,” which published online June 6, 2022, the second author’s name was misspelled. The correct spelling is Zhangsheng Yu, PhD. This article has been corrected online.


Error in Table Footnote: In the Original Investigation titled “Risk and Phenotype of Multisystem Inflammatory Syndrome in Vaccinated and Unvaccinated Danish Children Before and During the Omicron Wave,” published online June 8, 2022, there was an error in the Table 1 footnotes. In footnote a, reference citations were added, and a multiplier was corrected. This article was corrected online.