Respiratory Infections in Early Life and the Development of Islet Autoimmunity in Children at Increased Type 1 Diabetes Risk: Evidence From the BABYDIET Study | Infectious Diseases | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Patterson  CC, Gyürüs  E, Rosenbauer  J,  et al.  Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase.  Diabetologia. 2012;55(8):2142-2147.PubMedGoogle ScholarCrossref
Forlenza  GP, Rewers  M.  The epidemic of type 1 diabetes: what is it telling us?  Curr Opin Endocrinol Diabetes Obes. 2011;18(4):248-251.PubMedGoogle ScholarCrossref
Christen  U, Bender  C, von Herrath  MG.  Infection as a cause of type 1 diabetes?  Curr Opin Rheumatol. 2012;24(4):417-423.PubMedGoogle ScholarCrossref
Smura  T, Ylipaasto  P, Klemola  P,  et al.  Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis.  J Med Virol. 2010;82(11):1940-1949.PubMedGoogle ScholarCrossref
Gamble  DR, Kinsley  ML, FitzGerald  MG, Bolton  R, Taylor  KW.  Viral antibodies in diabetes mellitus.  Br Med J. 1969;3(5671):627-630.PubMedGoogle ScholarCrossref
Clements  GB, Galbraith  DN, Taylor  KW.  Coxsackie B virus infection and onset of childhood diabetes.  Lancet. 1995;346(8969):221-223.PubMedGoogle ScholarCrossref
Yeung  WC, Rawlinson  WD, Craig  ME.  Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies.  BMJ. 2011;342:d35.PubMedGoogle ScholarCrossref
Sadeharju  K, Hämäläinen  AM, Knip  M,  et al; Finnish TRIGR Study Group.  Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial.  Clin Exp Immunol. 2003;132(2):271-277.PubMedGoogle ScholarCrossref
Salminen  K, Sadeharju  K, Lönnrot  M,  et al.  Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study.  J Med Virol. 2003;69(1):91-98.PubMedGoogle ScholarCrossref
Füchtenbusch  M, Irnstetter  A, Jäger  G, Ziegler  AG.  No evidence for an association of coxsackie virus infections during pregnancy and early childhood with development of islet autoantibodies in offspring of mothers or fathers with type 1 diabetes.  J Autoimmun. 2001;17(4):333-340.PubMedGoogle ScholarCrossref
Graves  PM, Rotbart  HA, Nix  WA,  et al.  Prospective study of enteroviral infections and development of beta-cell autoimmunity: Diabetes Autoimmunity Study in the Young (DAISY).  Diabetes Res Clin Pract. 2003;59(1):51-61.PubMedGoogle ScholarCrossref
Simonen-Tikka  ML, Pflueger  M, Klemola  P,  et al.  Human enterovirus infections in children at increased risk for type 1 diabetes: the Babydiet study.  Diabetologia. 2011;54(12):2995-3002.PubMedGoogle ScholarCrossref
Honeyman  MC, Coulson  BS, Stone  NL,  et al.  Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes.  Diabetes. 2000;49(8):1319-1324.PubMedGoogle ScholarCrossref
Honeyman  M.  How robust is the evidence for viruses in the induction of type 1 diabetes?  Curr Opin Immunol. 2005;17(6):616-623.PubMedGoogle ScholarCrossref
Coppieters  KT, Boettler  T, von Herrath  M.  Virus infections in type 1 diabetes.  Cold Spring Harb Perspect Med. 2012;2(1):a007682.PubMedGoogle ScholarCrossref
Cunha  BA.  Fever myths and misconceptions: the beneficial effects of fever as a critical component of host defenses against infection.  Heart Lung. 2012;41(1):99-101.PubMedGoogle ScholarCrossref
Jiang  Q, Cross  AS, Singh  IS, Chen  TT, Viscardi  RM, Hasday  JD.  Febrile core temperature is essential for optimal host defense in bacterial peritonitis.  Infect Immun. 2000;68(3):1265-1270.PubMedGoogle ScholarCrossref
Horwitz  MS, Ilic  A, Fine  C, Balasa  B, Sarvetnick  N.  Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells.  Clin Immunol. 2004;110(2):134-144.PubMedGoogle ScholarCrossref
Strieter  RM, Lynch  JP  III, Basha  MA, Standiford  TJ, Kasahara  K, Kunkel  SL.  Host responses in mediating sepsis and adult respiratory distress syndrome.  Semin Respir Infect. 1990;5(3):233-247.PubMedGoogle Scholar
Schmid  S, Buuck  D, Knopff  A, Bonifacio  E, Ziegler  AG.  BABYDIET, a feasibility study to prevent the appearance of islet autoantibodies in relatives of patients with type 1 diabetes by delaying exposure to gluten.  Diabetologia. 2004;47(6):1130-1131.PubMedGoogle ScholarCrossref
Hummel  S, Pflüger  M, Hummel  M, Bonifacio  E, Ziegler  AG.  Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study.  Diabetes Care. 2011;34(6):1301-1305.PubMedGoogle ScholarCrossref
Schlosser  M, MUELLER  PW, Törn  C, Bonifacio  E, Bingley  PJ; Participating Laboratories.  Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies.  Diabetologia. 2010;53(12):2611-2620.PubMedGoogle ScholarCrossref
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.  Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.  Diabetes Care. 2003;26(suppl 1):S5-S20.PubMedGoogle ScholarCrossref
Singer  JD, Willett  JB.  Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York, NY: Oxford University Press; 2003.
Winkler  C, Lauber  C, Adler  K,  et al.  An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes.  Diabetes. 2011;60(2):685-690.PubMedGoogle ScholarCrossref
Koch  A, Sørensen  P, Homøe  P,  et al.  Population-based study of acute respiratory infections in children, Greenland.  Emerg Infect Dis. 2002;8(6):586-593.PubMedGoogle ScholarCrossref
Gold  BD, Khanna  B, Huang  LM, Lee  CY, Banatvala  N.  Helicobacter pylori acquisition in infancy after decline of maternal passive immunity.  Pediatr Res. 1997;41(5):641-646.PubMedGoogle ScholarCrossref
Desgrandchamps  D, Schaad  UB, Glaus  J, Tusch  G, Heininger  U.  Seroprevalence of IgG antibodies against measles, mumps and rubella in Swiss children during the first 16 months of life [in German].  Schweiz Med Wochenschr. 2000;130(41):1479-1486.PubMedGoogle Scholar
Derya  A, Necmi  A, Emre  A, Akgün  Y.  Decline of maternal hepatitis a antibodies during the first 2 years of life in infants born in Turkey.  Am J Trop Med Hyg. 2005;73(2):457-459.PubMedGoogle Scholar
Grüber  C, Keil  T, Kulig  M, Roll  S, Wahn  U, Wahn  V; MAS-90 Study Group.  History of respiratory infections in the first 12 yr among children from a birth cohort.  Pediatr Allergy Immunol. 2008;19(6):505-512.PubMedGoogle ScholarCrossref
van der Werf  N, Kroese  FG, Rozing  J, Hillebrands  JL.  Viral infections as potential triggers of type 1 diabetes.  Diabetes Metab Res Rev. 2007;23(3):169-183.PubMedGoogle ScholarCrossref
Colli  ML, Nogueira  TC, Allagnat  F,  et al.  Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim/Mcl-1 imbalance.  PLoS Pathog. 2011;7(9):e1002267.PubMedGoogle ScholarCrossref
Wucherpfennig  KW.  Mechanisms for the induction of autoimmunity by infectious agents.  J Clin Invest. 2001;108(8):1097-1104.PubMedGoogle ScholarCrossref
Roivainen  M, Klingel  K.  Virus infections and type 1 diabetes risk.  Curr Diab Rep. 2010;10(5):350-356.PubMedGoogle ScholarCrossref
Richardson  SJ, Willcox  A, Bone  AJ, Morgan  NG, Foulis  AK.  Immunopathology of the human pancreas in type-I diabetes.  Semin Immunopathol. 2011;33(1):9-21.PubMedGoogle ScholarCrossref
Ylipaasto  P, Smura  T, Gopalacharyulu  P,  et al.  Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction.  Diabetologia. 2012;55(12):3273-3283.PubMedGoogle ScholarCrossref
Williams  AJ, Bingley  PJ.  Worth the wait: type 1 diabetes prospective birth cohort studies enter adolescence.  Diabetologia. 2012;55(7):1873-1876.PubMedGoogle ScholarCrossref
Ziegler  AG, Bonifacio  E; BABYDIAB-BABYDIET Study Group.  Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes.  Diabetologia. 2012;55(7):1937-1943.PubMedGoogle ScholarCrossref
Parikka  V, Näntö-Salonen  K, Saarinen  M,  et al.  Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk.  Diabetologia. 2012;55(7):1926-1936.PubMedGoogle ScholarCrossref
Rasmussen  T, Witsø  E, Tapia  G, Stene  LC, Rønningen  KS.  Self-reported lower respiratory tract infections and development of islet autoimmunity in children with the type 1 diabetes high-risk HLA genotype: the MIDIA study.  Diabetes Metab Res Rev. 2011;27(8):834-837.PubMedGoogle ScholarCrossref
Mäkelä  MJ, Puhakka  T, Ruuskanen  O,  et al.  Viruses and bacteria in the etiology of the common cold.  J Clin Microbiol. 1998;36(2):539-542.PubMedGoogle Scholar
Monto  AS.  Epidemiology of viral respiratory infections.  Am J Med. 2002;112(suppl 6A):4S-12S.PubMedGoogle ScholarCrossref
Billaud  G, Peny  S, Legay  V, Lina  B, Valette  M.  Detection of rhinovirus and enterovirus in upper respiratory tract samples using a multiplex nested PCR.  J Virol Methods. 2003;108(2):223-228.PubMedGoogle ScholarCrossref
Original Investigation
September 2013

Respiratory Infections in Early Life and the Development of Islet Autoimmunity in Children at Increased Type 1 Diabetes Risk: Evidence From the BABYDIET Study

Author Affiliations
  • 1Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
  • 2Forschergruppe Diabetes e. V. am Helmholtz Zentrum München, Munich, Germany
JAMA Pediatr. 2013;167(9):800-807. doi:10.1001/jamapediatrics.2013.158

Importance  There is evidence for a role of infections within the pathogenesis of islet autoimmunity and type 1 diabetes mellitus (T1D), but previous studies did not allow assessment of potential critical time windows in this context.

Objective  To examine whether early, short-term, or cumulative exposures to episodes of infection and fever during the first 3 years of life were associated with the initiation of persistent islet autoimmunity in children at increased T1D risk.

Design  Prospective cohort study with daily infection records and regular assessment of islet autoimmunity.

Setting  Diabetes Research Institute, Munich, Germany.

Participants  A total of 148 children at high T1D risk with documentation of 1680 infectious events in 90 750 person-days during their first 3 years of life.

Main Outcomes and Measures  Hazard ratios (HRs) for seroconversion to persistent islet autoantibodies were assessed in Cox regression models with numbers of respiratory, gastrointestinal, and other infections, adjusting for sex, delivery mode, intervention group, season of birth, and antibiotic use.

Results  An increased HR of islet autoantibody seroconversion was associated with respiratory infections during the first 6 months of life (HR = 2.27; 95% CI, 1.32-3.91) and ages 6.0 to 11.9 months (HR = 1.32; 95% CI, 1.08-1.61). During the second year of life, no meaningful effects were detected for any infectious category. A higher number of respiratory infections in the 6 months prior to islet autoantibody seroconversion was also associated with an increased HR (HR = 1.42; 95% CI, 1.12-1.80).

Conclusions and Relevance  Respiratory infections in early childhood are a potential risk factor for the development of T1D.