Milk Consumption During Teenage Years and Risk of Hip Fractures in Older Adults | Geriatrics | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Teegarden  D, Proulx  WR, Martin  BR,  et al.  Peak bone mass in young women.  J Bone Miner Res. 1995;10(5):711-715.PubMedGoogle ScholarCrossref
2.
Bailey  DA, McKay  HA, Mirwald  RL, Crocker  PR, Faulkner  RA.  A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study.  J Bone Miner Res. 1999;14(10):1672-1679.PubMedGoogle ScholarCrossref
3.
Beunen  G, Thomis  M, Maes  HH,  et al.  Genetic variance of adolescent growth in stature.  Ann Hum Biol. 2000;27(2):173-186.PubMedGoogle ScholarCrossref
4.
Whiting  SJ, Vatanparast  H, Baxter-Jones  A, Faulkner  RA, Mirwald  R, Bailey  DA.  Factors that affect bone mineral accrual in the adolescent growth spurt.  J Nutr. 2004;134(3):696S-700S.PubMedGoogle Scholar
5.
Bailey  DA, Martin  AD, McKay  HA, Whiting  S, Mirwald  R.  Calcium accretion in girls and boys during puberty: a longitudinal analysis.  J Bone Miner Res. 2000;15(11):2245-2250.PubMedGoogle ScholarCrossref
6.
Vatanparast  H, Bailey  DA, Baxter-Jones  ADG, Whiting  SJ.  Calcium requirements for bone growth in Canadian boys and girls during adolescence.  Br J Nutr. 2010;103(4):575-580.PubMedGoogle ScholarCrossref
7.
Rizzoli  R, Bianchi  ML, Garabédian  M, McKay  HA, Moreno  LA.  Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly.  Bone. 2010;46(2):294-305.PubMedGoogle ScholarCrossref
8.
Huncharek  M, Muscat  J, Kupelnick  B.  Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis.  Bone. 2008;43(2):312-321.PubMedGoogle ScholarCrossref
9.
Ondrak  KS, Morgan  DW.  Physical activity, calcium intake and bone health in children and adolescents.  Sports Med. 2007;37(7):587-600.PubMedGoogle ScholarCrossref
10.
Weaver  CM.  The role of nutrition on optimizing peak bone mass.  Asia Pac J Clin Nutr. 2008;17(S1)(suppl 1):135-137.PubMedGoogle Scholar
11.
Lanou  AJ, Berkow  SE, Barnard  ND.  Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence.  Pediatrics. 2005;115(3):736-743.PubMedGoogle ScholarCrossref
12.
US Department of Health and Human Services.  Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: US Dept of Health & Human Services, Office of the Surgeon General; 2004.
13.
National Institute of Child Health and Human Development. Milk Matters for strong bones, for lifelong health, 2005. https://www.nichd.nih.gov/publications/pubs/Documents/MilkMatters_Brochure-508-rev.pdf. Accessed June 28, 2011.
14.
Loro  ML, Sayre  J, Roe  TF, Goran  MI, Kaufman  FR, Gilsanz  V.  Early identification of children predisposed to low peak bone mass and osteoporosis later in life.  J Clin Endocrinol Metab. 2000;85(10):3908-3918.PubMedGoogle Scholar
15.
Melton  LJ  III, Atkinson  EJ, Khosla  S, Oberg  AL, Riggs  BL.  Evaluation of a prediction model for long-term fracture risk.  J Bone Miner Res. 2005;20(4):551-556.PubMedGoogle ScholarCrossref
16.
Hernandez  CJ, Beaupré  GS, Carter  DR.  A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis.  Osteoporos Int. 2003;14(10):843-847.PubMedGoogle ScholarCrossref
17.
Berkey  CS, Colditz  GA, Rockett  HRH, Frazier  AL, Willett  WC.  Dairy consumption and female height growth: prospective cohort study.  Cancer Epidemiol Biomarkers Prev. 2009;18(6):1881-1887.PubMedGoogle ScholarCrossref
18.
Wiley  AS.  Does milk make children grow? relationships between milk consumption and height in NHANES 1999-2002.  Am J Hum Biol. 2005;17(4):425-441.PubMedGoogle ScholarCrossref
19.
Hemenway  D, Azrael  DR, Rimm  EB, Feskanich  D, Willett  WC.  Risk factors for hip fracture in US men aged 40 through 75 years.  Am J Public Health. 1994;84(11):1843-1845.PubMedGoogle ScholarCrossref
20.
Hemenway  D, Feskanich  D, Colditz  GA.  Body height and hip fracture: a cohort study of 90,000 women.  Int J Epidemiol. 1995;24(4):783-786.PubMedGoogle ScholarCrossref
21.
Stampfer  MJ, Willett  WC, Speizer  FE,  et al.  Test of the National Death Index.  Am J Epidemiol. 1984;119(5):837-839.PubMedGoogle Scholar
22.
Rich-Edwards  JW, Corsano  KA, Stampfer  MJ.  Test of the National Death Index and Equifax Nationwide Death Search.  Am J Epidemiol. 1994;140(11):1016-1019.PubMedGoogle Scholar
23.
Colditz  GA, Martin  P, Stampfer  MJ,  et al.  Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women.  Am J Epidemiol. 1986;123(5):894-900.PubMedGoogle Scholar
24.
Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School. 1986 Nurses’ Health Study questionnaire. http://www.channing.harvard.edu/nhs/questionnaires/pdfs/NHSI/1986.pdf. Accessed April 6, 2012.
25.
Harvard School of Public Health. 1988 Health Professionals Follow-up Study questionnaire. http://www.hsph.harvard.edu/hpfs/pdfs/88L.pdf. Accessed April 6, 2012.
26.
Frazier  AL, Willett  WC, Colditz  GA.  Reproducibility of recall of adolescent diet: Nurses’ Health Study (United States).  Cancer Causes Control. 1995;6(6):499-506.PubMedGoogle ScholarCrossref
27.
Maruti  SS, Feskanich  D, Colditz  GA,  et al.  Adult recall of adolescent diet: reproducibility and comparison with maternal reporting.  Am J Epidemiol. 2005;161(1):89-97.PubMedGoogle ScholarCrossref
28.
Troy  LM, Hunter  DJ, Manson  JE, Colditz  GA, Stampfer  MJ, Willett  WC.  The validity of recalled weight among younger women.  Int J Obes Relat Metab Disord. 1995;19(8):570-572.PubMedGoogle Scholar
29.
Faulkner  KG, Cummings  SR, Black  D, Palermo  L, Glüer  CC, Genant  HK.  Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.  J Bone Miner Res. 1993;8(10):1211-1217.PubMedGoogle ScholarCrossref
30.
Bergot  C, Bousson  V, Meunier  A, Laval-Jeantet  M, Laredo  JD.  Hip fracture risk and proximal femur geometry from DXA scans.  Osteoporos Int. 2002;13(7):542-550.PubMedGoogle ScholarCrossref
31.
Alonso  CG, Curiel  MD, Carranza  FH, Cano  RP, Perez  AD.  Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women: Multicenter Project for Research in Osteoporosis.  Osteoporos Int. 2000;11(8):714-720.PubMedGoogle ScholarCrossref
32.
El-Kaissi  S, Pasco  JA, Henry  MJ,  et al.  Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study.  Osteoporos Int. 2005;16(10):1299-1303.PubMedGoogle ScholarCrossref
33.
Ogden  CL, Kuczmarski  RJ, Flegal  KM,  et al.  Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version.  Pediatrics. 2002;109(1):45-60.PubMedGoogle ScholarCrossref
34.
Kalkwarf  HJ, Khoury  JC, Lanphear  BP.  Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women.  Am J Clin Nutr. 2003;77(1):257-265.PubMedGoogle Scholar
35.
Bonjour  JP, Chevalley  T, Ferrari  S, Rizzoli  R.  The importance and relevance of peak bone mass in the prevalence of osteoporosis.  Salud Publica Mex. 2009;51(suppl 1):S5-S17.PubMedGoogle ScholarCrossref
36.
Marshall  D, Johnell  O, Wedel  H.  Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.  BMJ. 1996;312(7041):1254-1259.PubMedGoogle ScholarCrossref
37.
Gafni  RI, Baron  J.  Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood.  Pediatrics. 2007;119(suppl 2):S131-S136.PubMedGoogle ScholarCrossref
38.
Lee  WT, Leung  SS, Leung  DM,  et al.  Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement.  Acta Paediatr. 1997;86(6):570-576.PubMedGoogle ScholarCrossref
39.
Slemenda  CW, Peacock  M, Hui  S, Zhou  L, Johnston  CC.  Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass.  J Bone Miner Res. 1997;12(4):676-682.PubMedGoogle ScholarCrossref
40.
Winzenberg  TM, Shaw  K, Fryer  J, Jones  G.  Calcium supplementation for improving bone mineral density in children.  Cochrane Database Syst Rev. 2006;19(2):CD005119.PubMedGoogle Scholar
41.
Merrilees  MJ, Smart  EJ, Gilchrist  NL,  et al.  Effects of diary food supplements on bone mineral density in teenage girls.  Eur J Nutr. 2000;39(6):256-262.PubMedGoogle ScholarCrossref
42.
Lambert  HL, Eastell  R, Karnik  K, Russell  JM, Barker  ME.  Calcium supplementation and bone mineral accretion in adolescent girls: an 18-mo randomized controlled trial with 2-y follow-up.  Am J Clin Nutr. 2008;87(2):455-462.PubMedGoogle Scholar
43.
Bonjour  JP, Chevalley  T, Ammann  P, Slosman  D, Rizzoli  R.  Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study.  Lancet. 2001;358(9289):1208-1212.PubMedGoogle ScholarCrossref
44.
Chevalley  T, Rizzoli  R, Hans  D, Ferrari  S, Bonjour  JP.  Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche.  J Clin Endocrinol Metab. 2005;90(1):44-51.PubMedGoogle ScholarCrossref
45.
Hamilton  CJ, Swan  VJ, Jamal  SA.  The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies.  Osteoporos Int. 2010;21(1):11-23.PubMedGoogle ScholarCrossref
46.
Trémollieres  FA, Pouilles  JM, Ribot  C.  Withdrawal of hormone replacement therapy is associated with significant vertebral bone loss in postmenopausal women.  Osteoporos Int. 2001;12(5):385-390.PubMedGoogle ScholarCrossref
47.
Sornay-Rendu  E, Garnero  P, Munoz  F, Duboeuf  F, Delmas  PD.  Effect of withdrawal of hormone replacement therapy on bone mass and bone turnover: the OFELY study.  Bone. 2003;33(1):159-166.PubMedGoogle ScholarCrossref
48.
Matkovic  V, Goel  PK, Badenhop-Stevens  NE,  et al.  Calcium supplementation and bone mineral density in females from childhood to young adulthood: a randomized controlled trial.  Am J Clin Nutr. 2005;81(1):175-188.PubMedGoogle Scholar
49.
Gafni  RI, McCarthy  EF, Hatcher  T,  et al.  Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density.  FASEB J. 2002;16(7):736-738.PubMedGoogle Scholar
50.
Peterson  CA, Eurell  JA, Erdman  JW  Jr.  Alterations in calcium intake on peak bone mass in the female rat.  J Bone Miner Res. 1995;10(1):81-95.PubMedGoogle ScholarCrossref
51.
Wentz  E, Mellström  D, Gillberg  C, Sundh  V, Gillberg  IC, Råstam  M.  Bone density 11 years after anorexia nervosa onset in a controlled study of 39 cases.  Int J Eat Disord. 2003;34(3):314-318.PubMedGoogle ScholarCrossref
52.
Lehtonen-Veromaa  MKM, Möttönen  TT, Nuotio  IO, Irjala  KMA, Leino  AE, Viikari  JSA.  Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study.  Am J Clin Nutr. 2002;76(6):1446-1453.PubMedGoogle Scholar
53.
Winzenberg  T, Powell  S, Shaw  KA, Jones  G.  Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis.  BMJ. 2011;342:c7254.PubMedGoogle ScholarCrossref
54.
Zhu  K, Zhang  Q, Foo  LH,  et al.  Growth, bone mass, and vitamin D status of Chinese adolescent girls 3 y after withdrawal of milk supplementation.  Am J Clin Nutr. 2006;83(3):714-721.PubMedGoogle Scholar
55.
Jones  G, Riley  MD, Whiting  S.  Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children.  Am J Clin Nutr. 2001;73(4):839-844.PubMedGoogle Scholar
56.
Alexy  U, Remer  T, Manz  F, Neu  CM, Schoenau  E.  Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children.  Am J Clin Nutr. 2005;82(5):1107-1114.PubMedGoogle Scholar
57.
Rizzoli  R, Bonjour  JP.  Dietary protein and bone health.  J Bone Miner Res. 2004;19(4):527-531.PubMedGoogle ScholarCrossref
58.
Budek  AZ, Hoppe  C, Ingstrup  H, Michaelsen  KF, Bügel  S, Mølgaard  C.  Dietary protein intake and bone mineral content in adolescents: the Copenhagen Cohort Study.  Osteoporos Int. 2007;18(12):1661-1667.PubMedGoogle ScholarCrossref
59.
Esterle  L, Sabatier  JP, Guillon-Metz  F,  et al.  Milk, rather than other foods, is associated with vertebral bone mass and circulating IGF-1 in female adolescents.  Osteoporos Int. 2009;20(4):567-575.PubMedGoogle ScholarCrossref
60.
Rich-Edwards  JW, Ganmaa  D, Pollak  MN,  et al.  Milk consumption and the prepubertal somatotropic axis.  Nutr J. 2007;6:28.PubMedGoogle ScholarCrossref
61.
Friedenreich  CM, Slimani  N, Riboli  E.  Measurement of past diet: review of previous and proposed methods.  Epidemiol Rev. 1992;14:177-196.PubMedGoogle Scholar
62.
Dwyer  JT, Gardner  J, Halvorsen  K, Krall  EA, Cohen  A, Valadian  I.  Memory of food intake in the distant past.  Am J Epidemiol. 1989;130(5):1033-1046.PubMedGoogle Scholar
63.
Welten  DC, Kemper  HC, Post  GB, Van Staveren  WA.  Relative validity of 16-year recall of calcium intake by a dairy questionnaire in young Dutch adults.  J Nutr. 1996;126(11):2843-2850.PubMedGoogle Scholar
64.
Chavarro  JE, Rosner  BA, Sampson  L,  et al.  Validity of adolescent diet recall 48 years later.  Am J Epidemiol. 2009;170(12):1563-1570.PubMedGoogle ScholarCrossref
65.
Welten  DC, Kemper  HC, Post  GB, Van Staveren  WA, Twisk  JW.  Longitudinal development and tracking of calcium and dairy intake from teenager to adult.  Eur J Clin Nutr. 1997;51(9):612-618.PubMedGoogle ScholarCrossref
66.
US Department of Agriculture; US Department of Health and Human Services.  Dietary Guidelines for Americans, 2010.7th ed. Washington, DC: US Dept of Agriculture, US Dept of Health & Human Services; 2010.
Original Investigation
January 2014

Milk Consumption During Teenage Years and Risk of Hip Fractures in Older Adults

Author Affiliations
  • 1Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts
  • 2Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
  • 3Department of Rheumatology and Institute for Physical Medicine and Rehabilitation, University Hospital Zurich, Zurich, Switzerland
  • 4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, Massachusetts
  • 5Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts
  • 6Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts
JAMA Pediatr. 2014;168(1):54-60. doi:10.1001/jamapediatrics.2013.3821
Abstract

Importance  Milk consumption during adolescence is recommended to promote peak bone mass and thereby reduce fracture risk in later life. However, its role in hip fracture prevention is not established and high consumption may adversely influence risk by increasing height.

Objectives  To determine whether milk consumption during teenage years influences risk of hip fracture in older adults and to investigate the role of attained height in this association.

Design, Setting, and Participants  Prospective cohort study over 22 years of follow-up in more than 96 000 white postmenopausal women from the Nurses’ Health Study and men aged 50 years and older from the Health Professionals Follow-up Study in the United States.

Exposures  Frequency of consumption of milk and other foods during ages 13 to 18 years and attained height were reported at baseline. Current diet, weight, smoking, physical activity, medication use, and other risk factors for hip fractures were reported on biennial questionnaires.

Main Outcomes and Measures  Cox proportional hazards models were used to calculate relative risks (RRs) of first incidence of hip fracture from low-trauma events per glass (8 fl oz or 240 mL) of milk consumed per day during teenage years.

Results  During follow-up, 1226 hip fractures were identified in women and 490 in men. After controlling for known risk factors and current milk consumption, each additional glass of milk per day during teenage years was associated with a significant 9% higher risk of hip fracture in men (RR = 1.09; 95% CI, 1.01-1.17). The association was attenuated when height was added to the model (RR = 1.06; 95% CI, 0.98-1.14). Teenage milk consumption was not associated with hip fractures in women (RR = 1.00 per glass per day; 95% CI, 0.95-1.05).

Conclusions and Relevance  Greater milk consumption during teenage years was not associated with a lower risk of hip fracture in older adults. The positive association observed in men was partially mediated through attained height.

×