Drug Labeling and Exposure in Neonates | Critical Care Medicine | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Kearns  GL, Abdel-Rahman  SM, Alander  SW, Blowey  DL, Leeder  JS, Kauffman  RE.  Developmental pharmacology: drug disposition, action, and therapy in infants and children.  N Engl J Med. 2003;349(12):1157-1167.PubMedGoogle ScholarCrossref
2.
Andersen  DH, Blanc  WA, Crozier  DN, Silverman  WA.  A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens.  Pediatrics. 1956;18(4):614-625.PubMedGoogle Scholar
3.
Stewart  DJ.  The effects of tetracyclines upon the dentition.  Br J Dermatol. 1964;76:374-378.PubMedGoogle ScholarCrossref
4.
Burns  LE, Hodgman  JE, Cass  AB.  Fatal circulatory collapse in premature infants receiving chloramphenicol.  N Engl J Med. 1959;261:1318-1321.PubMedGoogle ScholarCrossref
5.
Yeh  TF, Lin  YJ, Huang  CC,  et al.  Early dexamethasone therapy in preterm infants: a follow-up study.  Pediatrics. 1998;101(5):E7.PubMedGoogle ScholarCrossref
6.
Aranda  JV, Clarkson  S, Collinge  JM.  Changing pattern of drug utilization in a neonatal intensive care unit.  Am J Perinatol. 1983;1(1):28-30.PubMedGoogle Scholar
7.
Du  W, Warrier  I, Tutag Lehr  V, Salari  V, Ostrea  E, Aranda  JV.  Changing patterns of drug utilization in a neonatal intensive care population.  Am J Perinatol. 2006;23(5):279-285.PubMedGoogle ScholarCrossref
8.
Avenel  S, Bomkratz  A, Dassieu  G, Janaud  JC, Danan  C.  The incidence of prescriptions without marketing product license in a neonatal intensive care unit [in French].  Arch Pediatr. 2000;7(2):143-147.PubMedGoogle ScholarCrossref
9.
O’Donnell  CP, Stone  RJ, Morley  CJ.  Unlicensed and off-label drug use in an Australian neonatal intensive care unit.  Pediatrics. 2002;110(5):e52.PubMedGoogle ScholarCrossref
10.
’t Jong  GW, Vulto  AG, de Hoog  M, Schimmel  KJ, Tibboel  D, van den Anker  JN.  A survey of the use of off-label and unlicensed drugs in a Dutch children’s hospital.  Pediatrics. 2001;108(5):1089-1093.PubMedGoogle ScholarCrossref
11.
US Food and Drug Administration Modernization Act. Pub L No. 105–115, 111 Stat 2296 (1997).
12.
Pediatric Rule. 21 CFR §31455, 21 CFR §60127, 21 CFR §201, 21 CFR §312, 21 CFR §314, 21 CFR §601. Code of Federal Regulations.
13.
Best Pharmaceuticals for Children Act. Pub L No. 107–109, 115 Stat 1408 (2002).
14.
Pediatric Research Equity Act. Pub L No. 108-155, 117 Stat 1936-1943 (2003).
15.
US Food and Drug Administration Safety and Innovation Act of 2012. Pub L No. 112-114.
16.
FDA Pediatric Labeling Changes Table. US Food and Drug Administration website. www.fda.gov. Accessed January 15, 2013.
17.
Sachs  AN, Avant  D, Lee  CS, Rodriguez  W, Murphy  MD.  Pediatric information in drug product labeling.  JAMA. 2012;307(18):1914-1915.PubMedGoogle ScholarCrossref
18.
Medical, Statistical, and Clinical Pharmacology Reviews of Pediatric Studies Conducted under Section 505A and 505B of the Federal Food, Drug, and Cosmetic Act (the Act), as amended by the FDA Amendments Act of 2007. US Food and Drug Administration website. www.fda.gov. Accessed January 15, 2013.
19.
Summaries of Medical and Clinical Pharmacology Reviews of Pediatric Studies Conducted under Section 505A and 505B of the Federal Food, Drug, and Cosmetic Act (the Act), as amended by the Best Pharmaceuticals for Children Act of 2002. US Food and Drug Administration website. www.fda.gov. Accessed January 15, 2013.
20.
Drugs@FDA. US Food and Drug Administration website. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/. Accessed June 11, 2013.
21.
Standl  T, Lochbuehler  H, Galli  C, Reich  A, Dietrich  G, Hagemann  H.  HES 130/0.4 (Voluven) or human albumin in children younger than 2 yr undergoing non-cardiac surgery: a prospective, randomized, open label, multicentre trial.  Eur J Anaesthesiol. 2008;25(6):437-445.PubMedGoogle ScholarCrossref
22.
Kovacs  A, Cowles  MK, Britto  P,  et al.  Pharmacokinetics of didanosine and drug resistance mutations in infants exposed to zidovudine during gestation or postnatally and treated with didanosine or zidovudine in the first three months of life.  Pediatr Infect Dis J. 2005;24(6):503-509.PubMedGoogle ScholarCrossref
23.
Omari  T, Lundborg  P, Sandström  M,  et al.  Pharmacodynamics and systemic exposure of esomeprazole in preterm infants and term neonates with gastroesophageal reflux disease.  J Pediatr. 2009;155(2):222-228.PubMedGoogle ScholarCrossref
24.
James  LP, Marotti  T, Stowe  CD, Farrar  HC, Taylor  BJ, Kearns  GL.  Pharmacokinetics and pharmacodynamics of famotidine in infants.  J Clin Pharmacol. 1998;38(12):1089-1095.PubMedGoogle Scholar
25.
Orenstein  SR, Shalaby  TM, Devandry  SN,  et al.  Famotidine for infant gastro-oesophageal reflux: a multi-centre, randomized, placebo-controlled, withdrawal trial.  Aliment Pharmacol Ther. 2003;17(9):1097-1107.PubMedGoogle ScholarCrossref
26.
Moodley  D, Pillay  K, Naidoo  K,  et al.  Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours.  J Clin Pharmacol. 2001;41(7):732-741.PubMedGoogle ScholarCrossref
27.
Moodley  J, Moodley  D, Pillay  K,  et al.  Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring.  J Infect Dis. 1998;178(5):1327-1333.PubMedGoogle ScholarCrossref
28.
Springer  M, Atkinson  S, North  J, Raanan  M.  Safety and pharmacodynamics of lansoprazole in patients with gastroesophageal reflux disease aged <1 year.  Paediatr Drugs. 2008;10(4):255-263.PubMedGoogle ScholarCrossref
29.
Zhang  W, Kukulka  M, Witt  G, Sutkowski-Markmann  D, North  J, Atkinson  S.  Age-dependent pharmacokinetics of lansoprazole in neonates and infants.  Paediatr Drugs. 2008;10(4):265-274.PubMedGoogle ScholarCrossref
30.
Kaplan  SL, Deville  JG, Yogev  R,  et al; Linezolid Pediatric Study Group.  Linezolid versus vancomycin for treatment of resistant gram-positive infections in children.  Pediatr Infect Dis J. 2003;22(8):677-686.PubMedGoogle ScholarCrossref
31.
Kearns  GL, Jungbluth  GL, Abdel-Rahman  SM,  et al; Pediatric Pharmacology Research Unit Network.  Impact of ontogeny on linezolid disposition in neonates and infants.  Clin Pharmacol Ther. 2003;74(5):413-422.PubMedGoogle ScholarCrossref
32.
Chadwick  EG, Pinto  J, Yogev  R,  et al; International Maternal Pediatric Adolescent Clinical Trials Group (IMPAACT) P1030 Team.  Early initiation of lopinavir/ritonavir in infants less than 6 weeks of age: pharmacokinetics and 24-week safety and efficacy.  Pediatr Infect Dis J. 2009;28(3):215-219.PubMedGoogle ScholarCrossref
33.
Silver  LH, Woodside  AM, Montgomery  DB.  Clinical safety of moxifloxacin ophthalmic solution 0.5% (VIGAMOX) in pediatric and nonpediatric patients with bacterial conjunctivitis.  Surv Ophthalmol. 2005;50(suppl 1):S55-S63.PubMedGoogle ScholarCrossref
34.
Bryson  YJ, Mirochnick  M, Stek  A,  et al; PACTG 353 Team.  Pharmacokinetics and safety of nelfinavir when used in combination with zidovudine and lamivudine in HIV-infected pregnant women: Pediatric AIDS Clinical Trials Group (PACTG) Protocol 353.  HIV Clin Trials. 2008;9(2):115-125.PubMedGoogle ScholarCrossref
35.
Luzuriaga  K, McManus  M, Mofenson  L, Britto  P, Graham  B, Sullivan  JL; PACTG 356 Investigators.  A trial of three antiretroviral regimens in HIV-1-infected children.  N Engl J Med. 2004;350(24):2471-2480.PubMedGoogle ScholarCrossref
36.
Ballard  RA, Truog  WE, Cnaan  A,  et al; NO CLD Study Group.  Inhaled nitric oxide in preterm infants undergoing mechanical ventilation.  N Engl J Med. 2006;355(4):343-353.PubMedGoogle ScholarCrossref
37.
Kinsella  JP, Cutter  GR, Walsh  WF,  et al.  Early inhaled nitric oxide therapy in premature newborns with respiratory failure.  N Engl J Med. 2006;355(4):354-364.PubMedGoogle ScholarCrossref
38.
Mercier  JC, Hummler  H, Durrmeyer  X,  et al; EUNO Study Group.  Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial.  Lancet. 2010;376(9738):346-354.PubMedGoogle ScholarCrossref
39.
Ward  RM, Tammara  B, Sullivan  SE,  et al.  Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD).  Eur J Clin Pharmacol. 2010;66(6):555-561.PubMedGoogle ScholarCrossref
40.
Wells  TG, Heulitt  MJ, Taylor  BJ, Fasules  JW, Kearns  GL.  Pharmacokinetics and pharmacodynamics of ranitidine in neonates treated with extracorporeal membrane oxygenation.  J Clin Pharmacol. 1998;38(5):402-407.PubMedGoogle ScholarCrossref
41.
Davis  PJ, Galinkin  J, McGowan  FX,  et al.  A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy, I: emergence and recovery profiles.  Anesth Analg. 2001;93(6):1380-1386.PubMedGoogle ScholarCrossref
42.
Galinkin  JL, Davis  PJ, McGowan  FX,  et al.  A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy, II: perioperative breathing patterns in neonates and infants with pyloric stenosis.  Anesth Analg. 2001;93(6):1387-1392.PubMedGoogle ScholarCrossref
43.
Russell  IA, Miller Hance  WC, Gregory  G,  et al.  The safety and efficacy of sevoflurane anesthesia in infants and children with congenital heart disease.  Anesth Analg. 2001;92(5):1152-1158.PubMedGoogle ScholarCrossref
44.
Saul  JP, Ross  B, Schaffer  MS,  et al; Pediatric Sotalol Investigators.  Pharmacokinetics and pharmacodynamics of sotalol in a pediatric population with supraventricular and ventricular tachyarrhythmia.  Clin Pharmacol Ther. 2001;69(3):145-157.PubMedGoogle ScholarCrossref
45.
Saul  JP, Schaffer  MS, Karpawich  PP,  et al.  Single-dose pharmacokinetics of sotalol in a pediatric population with supraventricular and/or ventricular tachyarrhythmia.  J Clin Pharmacol. 2001;41(1):35-43.PubMedGoogle ScholarCrossref
46.
Shi  J, Ludden  TM, Melikian  AP, Gastonguay  MR, Hinderling  PH.  Population pharmacokinetics and pharmacodynamics of sotalol in pediatric patients with supraventricular or ventricular tachyarrhythmia.  J Pharmacokinet Pharmacodyn. 2001;28(6):555-575.PubMedGoogle ScholarCrossref
47.
Rongkavilit  C, Thaithumyanon  P, Chuenyam  T,  et al.  Pharmacokinetics of stavudine and didanosine coadministered with nelfinavir in human immunodeficiency virus-exposed neonates.  Antimicrob Agents Chemother. 2001;45(12):3585-3590.PubMedGoogle ScholarCrossref
48.
Kimberlin  DW, Acosta  EP, Sánchez  PJ,  et al; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group.  Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease.  J Infect Dis. 2008;197(6):836-845.PubMedGoogle ScholarCrossref
49.
Laughon  MM, Benjamin  DK  Jr, Capparelli  EV,  et al.  Innovative clinical trial design for pediatric therapeutics.  Expert Rev Clin Pharmacol. 2011;4(5):643-652.PubMedGoogle ScholarCrossref
50.
Malcolm  WF, Cotten  CM.  Metoclopramide, H2 blockers, and proton pump inhibitors: pharmacotherapy for gastroesophageal reflux in neonates.  Clin Perinatol. 2012;39(1):99-109.PubMedGoogle ScholarCrossref
51.
Cole  FS, Alleyne  C, Barks  JD,  et al.  NIH consensus development conference: inhaled nitric oxide therapy for premature infants.  NIH Consens State Sci Statements. 2010;27(5):1-34.PubMedGoogle Scholar
Original Investigation
February 2014

Drug Labeling and Exposure in Neonates

Author Affiliations
  • 1Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill
  • 2Food and Drug Administration, Rockville, Maryland
  • 3Duke Clinical Research Institute and Duke University Medical Center, Durham, North Carolina
  • 4Pediatrix Center for Research and Education, Sunrise, Florida
JAMA Pediatr. 2014;168(2):130-136. doi:10.1001/jamapediatrics.2013.4208
Abstract

Importance  Federal legislation has led to a notable increase in pediatric studies submitted to the Food and Drug Administration (FDA), resulting in new pediatric information in product labeling. However, approximately 50% of drug labels still have insufficient information on safety, efficacy, or dosing in children. Neonatal information in labeling is even scarcer because neonates comprise a vulnerable subpopulation for which end-point development is lagging and studies are more challenging.

Objective  To quantify progress made in neonatal studies and neonatal information in product labeling as a result of recent legislation.

Design, Setting, and Participants  We identified a cohort of drug studies between 1997 and 2010 that included neonates as a result of pediatric legislation using information available on the FDA website. We determined what studies were published in the medical literature, the legislation responsible for the studies, and the resulting neonatal labeling changes. We then examined the use of these drugs in a cohort of neonates admitted to 290 neonatal intensive care units (NICUs) (the Pediatrix Data Warehouse) in the United States from 2005 to 2010.

Exposure  Infants exposed to a drug studied in neonates as identified by the FDA website.

Main Outcomes and Measures  Number of drug studies with neonates and rate of exposure per 1000 admissions among infants admitted to an NICU.

Results  In a review of the FDA databases, we identified 28 drugs studied in neonates and 24 related labeling changes. Forty-one studies encompassed the 28 drugs, and 31 (76%) of these were published. Eleven (46%) of the 24 neonatal labeling changes established safety and effectiveness. In a review of a cohort of 446 335 hospitalized infants, we identified 399 drugs used and 1 525 739 drug exposures in the first 28 postnatal days. Thirteen (46%) of the 28 drugs studied in neonates were not used in NICUs; 8 (29%) were used in fewer than 60 neonates. Of the drugs studied, ranitidine was used most often (15 627 neonates, 35 exposures per 1000 admissions).

Conclusions and Relevance  Few drug labeling changes made under pediatric legislation include neonates. Most drugs studied are either not used or rarely used in US NICUs. Strategies to increase the study of safe and effective drugs for neonates are needed.

×