Satiety Mechanisms in Genetic Risk of Obesity | Genetics and Genomics | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Finucane  MM, Stevens  GA, Cowan  MJ,  et al.  National, regional, and global trends in body-mass index since 1980.  Lancet. 2011;377(9765):557-567.PubMedGoogle ScholarCrossref
2.
Lee  JM, Pilli  S, Gebremariam  A,  et al.  Getting heavier, younger.  Int J Obes (Lond). 2010;34(4):614-623.PubMedGoogle ScholarCrossref
3.
Elks  CE, den Hoed  M, Zhao  JH,  et al.  Variability in the heritability of body mass index.   Front Endocrinol (Lausanne). 2012;3:29. doi:10.3389/fendo.2012.00029. PubMedGoogle Scholar
4.
Maes  HH, Neale  MC, Eaves  LJ.  Genetic and environmental factors in relative body weight and human adiposity.  Behav Genet. 1997;27(4):325-351.PubMedGoogle ScholarCrossref
5.
Speliotes  EK, Willer  CJ, Berndt  SI,  et al; MAGIC; Procardis Consortium.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index.  Nat Genet. 2010;42(11):937-948.PubMedGoogle ScholarCrossref
6.
Belsky  DW, Moffitt  TE, Houts  R,  et al.  Polygenic risk, rapid childhood growth, and the development of obesity.  Arch Pediatr Adolesc Med. 2012;166(6):515-521.PubMedGoogle ScholarCrossref
7.
Fugger  L, McVean  G, Bell  JI.  Genomewide association studies and common disease.  N Engl J Med. 2012;367(25):2370-2371.PubMedGoogle ScholarCrossref
8.
Hingorani  AD, Shah  T, Kumari  M, Sofat  R, Smeeth  L.  Translating genomics into improved healthcare.  BMJ. 2010;341:c5945. doi:10.1136/bmj.c5945.PubMedGoogle ScholarCrossref
9.
Montague  CT, Farooqi  IS, Whitehead  JP,  et al.  Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;387(6636):903-908.PubMedGoogle ScholarCrossref
10.
Barsh  GS, Farooqi  IS, O’Rahilly  S.  Genetics of body-weight regulation.  Nature. 2000;404(6778):644-651.PubMedGoogle Scholar
11.
O’Rahilly  S, Farooqi  IS.  Human obesity as a heritable disorder of the central control of energy balance.  Int J Obes (Lond). 2008;32(suppl 7):S55-S61.PubMedGoogle ScholarCrossref
12.
Frayling  TM, Timpson  NJ, Weedon  MN,  et al.  A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.  Science. 2007;316(5826):889-894.PubMedGoogle ScholarCrossref
13.
Gerken  T, Girard  CA, Tung  YCL,  et al.  The obesity-associated FTO gene encodes a 2-oxoglutarate–dependent nucleic acid demethylase.  Science. 2007;318(5855):1469-1472.PubMedGoogle ScholarCrossref
14.
Cecil  JE, Tavendale  R, Watt  P, Hetherington  MM, Palmer  CN.  An obesity-associated FTO gene variant and increased energy intake in children.  N Engl J Med. 2008;359(24):2558-2566.PubMedGoogle ScholarCrossref
15.
Wardle  J, Llewellyn  C, Sanderson  S, Plomin  R.  The FTO gene and measured food intake in children.  Int J Obes (Lond). 2009;33(1):42-45.PubMedGoogle ScholarCrossref
16.
Wardle  J, Carnell  S, Haworth  CM, Farooqi  IS, O’Rahilly  S, Plomin  R.  Obesity associated genetic variation in FTO is associated with diminished satiety.  J Clin Endocrinol Metab. 2008;93(9):3640-3643.PubMedGoogle ScholarCrossref
17.
Karra  E, O’Daly  OG, Choudhury  AI,  et al.  A link between FTO, ghrelin, and impaired brain food-cue responsivity.  J Clin Invest. 2013;123(8):3539-3551.PubMedGoogle ScholarCrossref
18.
Parkinson  KN, Drewett  RF, Le Couteur  AS, Adamson  AJ; Gateshead Milennium Study Core Team.  Do maternal ratings of appetite in infants predict later Child Eating Behaviour Questionnaire scores and body mass index?  Appetite. 2010;54(1):186-190.PubMedGoogle ScholarCrossref
19.
van Jaarsveld  CHM, Boniface  D, Llewellyn  CH, Wardle  J.  Appetite and growth: a longitudinal sibling analysis [published online February 17, 2014].  JAMA Pediatr. doi:10.1001/jamapediatrics.2013.4951.PubMedGoogle Scholar
20.
van Jaarsveld  CH, Llewellyn  CH, Johnson  L, Wardle  J.  Prospective associations between appetitive traits and weight gain in infancy.  Am J Clin Nutr. 2011;94(6):1562-1567.PubMedGoogle ScholarCrossref
21.
Carnell  S, Haworth  CM, Plomin  R, Wardle  J.  Genetic influence on appetite in children.  Int J Obes (Lond). 2008;32(10):1468-1473.PubMedGoogle ScholarCrossref
22.
Llewellyn  CH, van Jaarsveld  CH, Johnson  L, Carnell  S, Wardle  J.  Nature and nurture in infant appetite.  Am J Clin Nutr. 2010;91(5):1172-1179.PubMedGoogle ScholarCrossref
23.
Haworth  CM, Davis  OS, Plomin  R.  Twins Early Development Study (TEDS).  Twin Res Hum Genet. 2013;16(1):117-125.PubMedGoogle ScholarCrossref
24.
Carnell  S, Wardle  J.  Appetite and adiposity in children.  Am J Clin Nutr. 2008;88(1):22-29.PubMedGoogle Scholar
25.
Barrett  JC, Lee  JC, Lees  CW,  et al; UK IBD Genetics Consortium; Wellcome Trust Case Control Consortium 2.  Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region.  Nat Genet. 2009;41(12):1330-1334.PubMedGoogle ScholarCrossref
26.
Trzaskowski  M, Eley  TC, Davis  OS,  et al.  First genome-wide association study on anxiety-related behaviours in childhood.  PLoS One. 2013;8(4):e58676. doi:10.1371/journal.pone.0058676.PubMedGoogle ScholarCrossref
27.
Howie  BN, Donnelly  P, Marchini  J.  A flexible and accurate genotype imputation method for the next generation of genome-wide association studies.  PLoS Genet. 2009;5(6):e1000529. doi:10.1371/journal.pgen.1000529.PubMedGoogle ScholarCrossref
28.
Johnson  AD, Handsaker  RE, Pulit  SL, Nizzari  MM, O’Donnell  CJ, de Bakker  PI.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap.  Bioinformatics. 2008;24(24):2938-2939.PubMedGoogle ScholarCrossref
29.
Bradfield  JP, Taal  HR, Timpson  NJ,  et al; Early Growth Genetics Consortium.  A genome-wide association meta-analysis identifies new childhood obesity loci.  Nat Genet. 2012;44(5):526-531.PubMedGoogle ScholarCrossref
30.
Wardle  J, Carnell  S, Haworth  CM, Plomin  R.  Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment.  Am J Clin Nutr. 2008;87(2):398-404.PubMedGoogle Scholar
31.
Cole  TJ, Freeman  JV, Preece  MA.  Body mass index reference curves for the UK, 1990.  Arch Dis Child. 1995;73(1):25-29.PubMedGoogle ScholarCrossref
32.
Cole TJ. Software for LMS Method: LMSGrowth Program. Version 2.64. London, England: Child Growth Foundation; August 21, 2008.
33.
Wardle  J, Guthrie  CA, Sanderson  S, Rapoport  L.  Development of the Children’s Eating Behaviour Questionnaire.  J Child Psychol Psychiatry. 2001;42(7):963-970.PubMedGoogle ScholarCrossref
34.
Carnell  S, Wardle  J.  Measuring behavioural susceptibility to obesity.  Appetite. 2007;48(1):104-113.PubMedGoogle ScholarCrossref
35.
MacKinnon  DP, Fairchild  AJ, Fritz  MS.  Mediation analysis.  Annu Rev Psychol. 2007;58:593-614.PubMedGoogle ScholarCrossref
36.
Preacher  KJ, Hayes  AF.  SPSS and SAS procedures for estimating indirect effects in simple mediation models.  Behav Res Methods Instrum Comput. 2004;36(4):717-731.PubMedGoogle ScholarCrossref
37.
Price  TS, Freeman  B, Craig  I, Petrill  SA, Ebersole  L, Plomin  R.  Infant zygosity can be assigned by parental report questionnaire data.  Twin Res. 2000;3(3):129-133.PubMedGoogle ScholarCrossref
38.
Llewellyn  CH, van Jaarsveld  CH, Plomin  R, Fisher  A, Wardle  J.  Inherited behavioral susceptibility to adiposity in infancy.  Am J Clin Nutr. 2012;95(3):633-639.PubMedGoogle ScholarCrossref
39.
Llewellyn  CH, Trzaskowski  M, Plomin  R, Wardle  J.  Finding the missing heritability in pediatric obesity.  Int J Obes (Lond). 2013;37(11):1506-1509.PubMedGoogle ScholarCrossref
40.
Vattikuti  S, Guo  J, Chow  CC.  Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits.  PLoS Genet. 2012;8(3):e1002637. doi:10.1371/journal.pgen.1002637. PubMedGoogle ScholarCrossref
41.
Yang  J, Manolio  TA, Pasquale  LR,  et al.  Genome partitioning of genetic variation for complex traits using common SNPs.  Nat Genet. 2011;43(6):519-525.PubMedGoogle ScholarCrossref
42.
Whitaker  KL, Jarvis  MJ, Beeken  RJ, Boniface  D, Wardle  J.  Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample.  Am J Clin Nutr. 2010;91(6):1560-1567.PubMedGoogle ScholarCrossref
43.
Whitaker  KL, Jarvis  MJ, Boniface  D, Wardle  J.  The intergenerational transmission of thinness.  Arch Pediatr Adolesc Med. 2011;165(10):900-905.PubMedGoogle ScholarCrossref
Original Investigation
April 2014

Satiety Mechanisms in Genetic Risk of Obesity

Author Affiliations
  • 1Health Behaviour Research Centre, Department of Epidemiology and Public Health, University College London, London, England
  • 2Division of Health and Social Care Research, King’s College London, London, England
JAMA Pediatr. 2014;168(4):338-344. doi:10.1001/jamapediatrics.2013.4944
Abstract

Importance  A better understanding of the cause of obesity is a clinical priority. Obesity is highly heritable, and specific genes are being identified. Discovering the mechanisms through which obesity-related genes influence weight would help pinpoint novel targets for intervention. One potential mechanism is satiety responsiveness. Lack of satiety characterizes many monogenic obesity disorders, and lower satiety responsiveness is linked with weight gain in population samples.

Objective  To test the hypothesis that satiety responsiveness is an intermediate behavioral phenotype associated with genetic predisposition to obesity in children.

Design, Setting, and Participants  Cross-sectional observational study of a population-based cohort of twins born January 1, 1994, to December 31, 1996 (Twins Early Development Study). Participants included 2258 unrelated children (53.3% female; mean [SD] age, 9.9 [0.8] years), one randomly selected from each twin pair.

Exposure  Genetic predisposition to obesity. We created a polygenic risk score (PRS) comprising 28 common obesity-related single-nucleotide polymorphisms identified in a meta-analysis of obesity-related genome-wide association studies.

Main Outcomes and Measures  Satiety responsiveness was indexed with a standard psychometric scale (Child Eating Behavior Questionnaire). Using 1990 United Kingdom reference data, body mass index SD scores and waist SD scores were calculated from parent-reported anthropometric data for each child. Information on satiety responsiveness, anthropometrics, and genotype was available for 2258 children. We examined associations among the PRS, adiposity, and satiety responsiveness.

Results  The PRS was negatively related to satiety responsiveness (β coefficient, −0.060; 95% CI, −0.019 to −0.101) and positively related to adiposity (β coefficient, 0.177; 95% CI, 0.136-0.218 for body mass index SD scores and β coefficient, 0.167; 95% CI, 0.126-0.208 for waist SD scores). More children in the top 25% of the PRS were overweight than in the lowest 25% (18.5% vs 7.2%; odds ratio, 2.90; 95% CI, 1.98-4.25). Associations between the PRS and adiposity were significantly mediated by satiety responsiveness (P = .006 for body mass index SD scores and P = .005 for waist SD scores).

Conclusions and Relevance  These results support the hypothesis that low satiety responsiveness is one of the mechanisms through which genetic predisposition leads to weight gain in an environment rich with food. Strategies to enhance satiety responsiveness could help prevent weight gain in genetically at-risk children.

×