Microbial Exposure in Infancy and Subsequent Appearance of Type 1 Diabetes Mellitus–Associated Autoantibodies: A Cohort Study | Allergy and Clinical Immunology | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Strachan  DP.  Hay fever, hygiene, and household size.  BMJ. 1989;299(6710):1259-1260.PubMedGoogle ScholarCrossref
2.
Rook  GAW.  Hygiene hypothesis and autoimmune diseases.  Clin Rev Allergy Immunol. 2012;42(1):5-15.PubMedGoogle ScholarCrossref
3.
Hanski  I, von Hertzen  L, Fyhrquist  N,  et al.  Environmental biodiversity, human microbiota, and allergy are interrelated.  Proc Natl Acad Sci U S A. 2012;109(21):8334-8339.PubMedGoogle ScholarCrossref
4.
Chapman  NM, Coppieters  K, von Herrath  M, Tracy  S.  The microbiology of human hygiene and its impact on type 1 diabetes.  Islets. 2012;4(4):253-261.PubMedGoogle ScholarCrossref
5.
Kilkkinen  A, Virtanen  SM, Klaukka  T,  et al.  Use of antimicrobials and risk of type 1 diabetes in a population-based mother-child cohort.  Diabetologia. 2006;49(1):66-70.PubMedGoogle ScholarCrossref
6.
Kupila  A, Muona  P, Simell  T,  et al; Juvenile Diabetes Research Foundation Centre for the Prevention of Type I Diabetes in Finland.  Feasibility of genetic and immunological prediction of type I diabetes in a population-based birth cohort.  Diabetologia. 2001;44(3):290-297.PubMedGoogle ScholarCrossref
7.
Virtanen  SM, Kenward  MG, Erkkola  M,  et al.  Age at introduction of new foods and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes.  Diabetologia. 2006;49(7):1512-1521.PubMedGoogle ScholarCrossref
8.
Ilonen  J, Reijonen  H, Herva  E,  et al.  Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population: the Childhood Diabetes in Finland (DiMe) Study Group.  Diabetes Care. 1996;19(8):795-800.PubMedGoogle ScholarCrossref
9.
Asher  MI, Keil  U, Anderson  HR,  et al.  International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods.  Eur Respir J. 1995;8(3):483-491.PubMedGoogle ScholarCrossref
10.
Siljander  HT, Simell  S, Hekkala  A,  et al.  Predictive characteristics of diabetes-associated autoantibodies among children with HLA-conferred disease susceptibility in the general population.  Diabetes. 2009;58(12):2835-2842.PubMedGoogle ScholarCrossref
11.
Knip  M, Virtanen  SM, Seppä  K,  et al; Finnish TRIGR Study Group.  Dietary intervention in infancy and later signs of beta-cell autoimmunity.  N Engl J Med. 2010;363(20):1900-1908.PubMedGoogle ScholarCrossref
12.
Liang  KY, Zeger  SL.  Longitudinal data analysis using generalized linear models.  Biometrika. 1986;73(1):13-22.Google ScholarCrossref
13.
Cardwell  CR, Stene  LC, Joner  G,  et al.  Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies.  Diabetologia. 2008;51(5):726-735.PubMedGoogle ScholarCrossref
14.
Sterne  JA, White  IR, Carlin  JB,  et al.  Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls.  BMJ. 2009;338:b2393. doi:10.1136/bmj.b2393.PubMedGoogle ScholarCrossref
15.
Wahlberg  J, Vaarala  O, Ludvigsson  J; ABIS Study Group.  Asthma and allergic symptoms and type 1 diabetes–related autoantibodies in 2.5-yr-old children.  Pediatr Diabetes. 2011;12(7):604-610.PubMedGoogle ScholarCrossref
16.
Radon  K, Windstetter  D, Solfrank  S, von Mutius  E, Nowak  D, Schwarz  H-P; Chronic Autoimmune Disease and Contact to Animals (CAT) Study Group.  Exposure to farming environments in early life and type 1 diabetes: a case-control study.  Diabetes. 2005;54(11):3212-3216.PubMedGoogle ScholarCrossref
17.
McKinney  PA, Okasha  M, Parslow  RC,  et al.  Early social mixing and childhood type 1 diabetes mellitus: a case-control study in Yorkshire, UK.  Diabet Med. 2000;17(3):236-242.PubMedGoogle ScholarCrossref
18.
Cardwell  CR, Carson  DJ, Yarnell  J, Shields  MD, Patterson  CC.  Atopy, home environment and the risk of childhood-onset type 1 diabetes: a population-based case-control study.  Pediatr Diabetes. 2008;9(3, pt 1):191-196.PubMedGoogle ScholarCrossref
19.
D’Angeli  MA, Merzon  E, Valbuena  LF, Tirschwell  D, Paris  CA, Mueller  BA.  Environmental factors associated with childhood-onset type 1 diabetes mellitus: an exploration of the hygiene and overload hypotheses.  Arch Pediatr Adolesc Med. 2010;164(8):732-738.PubMedGoogle ScholarCrossref
20.
Snell-Bergeon  JK, Smith  J, Dong  F,  et al.  Early childhood infections and the risk of islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY).  Diabetes Care. 2012;35(12):2553-2558.PubMedGoogle ScholarCrossref
21.
Bruno  G, Spadea  T, Picariello  R,  et al; Piedmont Study Group for Diabetes Epidemiology.  Early life socioeconomic indicators and risk of type 1 diabetes in children and young adults.  J Pediatr. 2013;162(3):600-605, e1. doi:10.1016/j.jpeds.2012.09.010.PubMedGoogle ScholarCrossref
22.
Patterson  CC, Dahlquist  G, Soltész  G, Green  A; EURODIAB ACE Study Group. Europe and Diabetes.  Is childhood-onset type I diabetes a wealth-related disease? an ecological analysis of European incidence rates.  Diabetologia. 2001;44(suppl 3):B9-B16.PubMedGoogle ScholarCrossref
23.
Jarosz-Chobot  P, Polanska  J, Polanski  A.  Does social-economical transformation influence the incidence of type 1 diabetes mellitus? a Polish example.  Pediatr Diabetes. 2008;9(3, pt 1):202-207.PubMedGoogle ScholarCrossref
24.
Giongo  A, Gano  KA, Crabb  DB,  et al.  Toward defining the autoimmune microbiome for type 1 diabetes.  ISME J. 2011;5(1):82-91.PubMedGoogle ScholarCrossref
25.
Bluestone  JA, Herold  K, Eisenbarth  G.  Genetics, pathogenesis and clinical interventions in type 1 diabetes.  Nature. 2010;464(7293):1293-1300.PubMedGoogle ScholarCrossref
26.
Oikarinen  M, Tauriainen  S, Oikarinen  S,  et al.  Type 1 diabetes is associated with enterovirus infection in gut mucosa.  Diabetes. 2012;61(3):687-691.PubMedGoogle ScholarCrossref
27.
Bergroth  E, Remes  S, Pekkanen  J, Kauppila  T, Büchele  G, Keski-Nisula  L.  Respiratory tract illnesses during the first year of life: effect of dog and cat contacts.  Pediatrics. 2012;130(2):211-220.PubMedGoogle ScholarCrossref
28.
Heyworth  JS, Cutt  H, Glonek  G.  Does dog or cat ownership lead to increased gastroenteritis in young children in South Australia?  Epidemiol Infect. 2006;134(5):926-934.PubMedGoogle ScholarCrossref
29.
Smallwood  J, Ownby  D.  Exposure to dog allergens and subsequent allergic sensitization: an updated review.  Curr Allergy Asthma Rep. 2012;12(5):424-428.PubMedGoogle ScholarCrossref
30.
Ownby  DR, Peterson  EL, Wegienka  G,  et al.  Are cats and dogs the major source of endotoxin in homes?  Indoor Air. 2013;23(3):219-226.PubMedGoogle ScholarCrossref
31.
Abraham  JH, Finn  PW, Milton  DK, Ryan  LM, Perkins  DL, Gold  DR.  Infant home endotoxin is associated with reduced allergen-stimulated lymphocyte proliferation and IL-13 production in childhood.  J Allergy Clin Immunol. 2005;116(2):431-437.PubMedGoogle ScholarCrossref
32.
Lappalainen  MH, Huttunen  K, Roponen  M, Remes  S, Hirvonen  MR, Pekkanen  J.  Exposure to dogs is associated with a decreased tumour necrosis factor-α–producing capacity in early life.  Clin Exp Allergy. 2010;40(10):1498-1506.PubMedGoogle ScholarCrossref
Original Investigation
August 2014

Microbial Exposure in Infancy and Subsequent Appearance of Type 1 Diabetes Mellitus–Associated Autoantibodies: A Cohort Study

Author Affiliations
  • 1The National Institute for Health and Welfare, Nutrition Unit, Helsinki, Finland
  • 2Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
  • 3The Science Center of Pirkanmaa Hospital District, Tampere, Finland
  • 4School of Health Sciences, University of Tampere, Tampere, Finland
  • 5University of Helsinki, Hjelt Institute, Helsinki, Finland
  • 6Department of Statistics, Faculty of Mathematics and Natural Sciences, University of Turku, Turku, Finland
  • 7Children’s Hospital, University of Helsinki, and University Central Hospital, Helsinki, Finland
  • 8University of Helsinki, Diabetes and Obesity Research Program, Helsinki, Finland
  • 9Department of Pediatrics, Faculty of Medicine, University of Turku, Turku, Finland
  • 10Immunogenetics Laboratory, University of Turku, Turku, Finland
  • 11Department of Clinical Microbiology, Faculty of Health Sciences, University of Eastern Finland, Kuopio
  • 12School of Medicine, University of Tampere, Tampere, Finland
  • 13Department of Pediatrics, University of Oulu, Oulu, Finland
  • 14Folkhälsan Research Center, Helsinki, Finland
JAMA Pediatr. 2014;168(8):755-763. doi:10.1001/jamapediatrics.2014.296
Abstract

Importance  The role of microbial exposure during early life in the development of type 1 diabetes mellitus is unclear.

Objective  To investigate whether animal contact and other microbial exposures during infancy are associated with the development of preclinical and clinical type 1 diabetes.

Design, Setting, and Participants  A birth cohort of children with HLA antigen–DQB1–conferred susceptibility to type 1 diabetes was examined. Participants included 3143 consecutively born children at 2 hospitals in Finland between 1996 and 2004.

Exposures  The following exposures during the first year of life were assessed: indoor and outdoor dogs and cats, farm animals, farming, visit to a stable, day care, and exposure to antibiotics during the first week of life.

Main Outcomes and Measures  Clinical and preclinical type 1 diabetes were used as outcomes. The latter was defined as repeated positivity for islet-cell antibodies plus for at least 1 of 3 other diabetes-associated autoantibodies analyzed and/or clinical type 1 diabetes. The autoantibodies were analyzed at 3- to 12-month intervals since the birth of the child.

Results  Children exposed to an indoor dog, compared with otherwise similar children without an indoor dog exposure, had a reduced odds of developing preclinical type 1 diabetes (adjusted odds ratio [OR], 0.47; 95% CI, 0.28-0.80; P = .005) and clinical type 1 diabetes (adjusted OR, 0.40; 95% CI, 0.14-1.14; P = .08). All of the other microbial exposures studied were not associated with preclinical or clinical diabetes: the odds ratios ranged from 0.74 to 1.58.

Conclusions and Relevance  Among the 9 early microbial exposures studied, only the indoor dog exposure during the first year of life was inversely associated with the development of preclinical type 1 diabetes. This finding needs to be confirmed in other populations.

×