Changes in Gastric and Lung Microflora With Acid Suppression: Acid Suppression and Bacterial Growth | Gastroenterology | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Nelson  SP, Kothari  S, Wu  EQ, Beaulieu  N, McHale  JM, Dabbous  OH.  Pediatric gastroesophageal reflux disease and acid-related conditions: trends in incidence of diagnosis and acid suppression therapy.  J Med Econ. 2009;12(4):348-355.PubMedGoogle ScholarCrossref
Canani  RB, Cirillo  P, Roggero  P,  et al; Working Group on Intestinal Infections of the Italian Society of Pediatric Gastroenterology, Hepatology and Nutrition (SIGENP).  Therapy with gastric acidity inhibitors increases the risk of acute gastroenteritis and community-acquired pneumonia in children.  Pediatrics. 2006;117(5):e817-e820.PubMedGoogle ScholarCrossref
Turco  R, Martinelli  M, Miele  E,  et al.  Proton pump inhibitors as a risk factor for paediatric Clostridium difficile infection.  Aliment Pharmacol Ther. 2010;31(7):754-759.PubMedGoogle ScholarCrossref
Holbrook  JT, Wise  RA, Gold  BD,  et al; Writing Committee for the American Lung Association Asthma Clinical Research Centers.  Lansoprazole for children with poorly controlled asthma: a randomized controlled trial.  JAMA. 2012;307(4):373-381.PubMedGoogle ScholarCrossref
Thorens  J, Froehlich  F, Schwizer  W,  et al.  Bacterial overgrowth during treatment with omeprazole compared with cimetidine: a prospective randomised double blind study.  Gut. 1996;39(1):54-59.PubMedGoogle ScholarCrossref
Torres  A, El-Ebiary  M, Soler  N, Montón  C, Fàbregas  N, Hernández  C.  Stomach as a source of colonization of the respiratory tract during mechanical ventilation: association with ventilator-associated pneumonia.  Eur Respir J. 1996;9(8):1729-1735.PubMedGoogle ScholarCrossref
Hill  M.  Normal and pathological microbial flora of the upper gastrointestinal tract.  Scand J Gastroenterol Suppl. 1985;111:1-6.PubMedGoogle ScholarCrossref
Rosen  R, Nurko  S.  The importance of multichannel intraluminal impedance in the evaluation of children with persistent respiratory symptoms.  Am J Gastroenterol. 2004;99(12):2452-2458.PubMedGoogle ScholarCrossref
Rudolph  CD, Mazur  LJ, Liptak  GS,  et al; North American Society for Pediatric Gastroenterology and Nutrition.  Guidelines for evaluation and treatment of gastroesophageal reflux in infants and children: recommendations of the North American Society for Pediatric Gastroenterology and Nutrition.  J Pediatr Gastroenterol Nutr. 2001;32(suppl 2):S1-S31.PubMedGoogle ScholarCrossref
Shay  S, Tutuian  R, Sifrim  D,  et al.  Twenty-four hour ambulatory simultaneous impedance and pH monitoring: a multicenter report of normal values from 60 healthy volunteers.  Am J Gastroenterol. 2004;99(6):1037-1043.PubMedGoogle ScholarCrossref
Cardenas  PA, Cooper  PJ, Cox  MJ,  et al.  Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador.  PLoS One. 2012;7(10):e46803.PubMedGoogle ScholarCrossref
Lo  WK, Chan  WW.  Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis.  Clin Gastroenterol Hepatol. 2013;11(5):483-490.PubMedGoogle ScholarCrossref
Segal  R, Pogoreliuk  I, Dan  M, Baumoehl  Y, Leibovitz  A.  Gastric microbiota in elderly patients fed via nasogastric tubes for prolonged periods.  J Hosp Infect. 2006;63(1):79-83.PubMedGoogle ScholarCrossref
Leibovitz  A, Plotnikov  G, Habot  B, Rosenberg  M, Segal  R.  Pathogenic colonization of oral flora in frail elderly patients fed by nasogastric tube or percutaneous enterogastric tube.  J Gerontol A Biol Sci Med Sci. 2003;58(1):52-55.PubMedGoogle ScholarCrossref
Morris  A, Beck  JM, Schloss  PD,  et al; Lung HIV Microbiome Project.  Comparison of the respiratory microbiome in healthy nonsmokers and smokers.  Am J Respir Crit Care Med. 2013;187(10):1067-1075.PubMedGoogle ScholarCrossref
Rosen  R, Johnston  N, Hart  K, Khatwa  U, Katz  E, Nurko  S.  Higher rate of bronchoalveolar lavage culture positivity in children with nonacid reflux and respiratory disorders.  J Pediatr. 2011;159(3):504-506.PubMedGoogle ScholarCrossref
Palm  K, Sawicki  G, Rosen  R.  The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis.  Pediatr Pulmonol. 2012;47(6):582-587.PubMedGoogle ScholarCrossref
Ruohola  A, Pettigrew  MM, Lindholm  L,  et al.  Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media.  J Infect. 2013;66(3):247-254.PubMedGoogle ScholarCrossref
Laufer  AS, Metlay  JP, Gent  JF, Fennie  KP, Kong  Y, Pettigrew  MM.  Microbial communities of the upper respiratory tract and otitis media in children.  MBio. 2011;2(1):e00245-e10.PubMedGoogle ScholarCrossref
Ichinohe  T, Pang  IK, Kumamoto  Y,  et al.  Microbiota regulates immune defense against respiratory tract influenza A virus infection.  Proc Natl Acad Sci U S A. 2011;108(13):5354-5359.PubMedGoogle ScholarCrossref
Mühlemann  K, Uehlinger  DE, Büchi  W, Gorgievski  M, Aebi  C.  The prevalence of penicillin-non-susceptible Streptococcus pneumoniae among children aged < 5 years correlates with the biannual epidemic activity of respiratory syncytial virus.  Clin Microbiol Infect. 2006;12(9):873-879.PubMedGoogle ScholarCrossref
Sakwinska  O, Bastic Schmid  V, Berger  B,  et al.  Nasopharyngeal microbiota in healthy children and pneumonia patients.  J Clin Microbiol. 2014;52(5):1590-1594.PubMedGoogle ScholarCrossref
Lambotte  O, Timsit  JF, Garrouste-Orgeas  M, Misset  B, Benali  A, Carlet  J.  The significance of distal bronchial samples with commensals in ventilator-associated pneumonia: colonizer or pathogen?  Chest. 2002;122(4):1389-1399.PubMedGoogle ScholarCrossref
Donatsky  AM, Holzknecht  BJ, Arpi  M,  et al.  Oral chlorhexidine and microbial contamination during endoscopy: possible implications for transgastric surgery. A randomized, clinical trial.  Surg Endosc. 2013;27(6):1914-1922.PubMedGoogle ScholarCrossref
Riedler  J, Grigg  J, Stone  C, Tauro  G, Robertson  CF.  Bronchoalveolar lavage cellularity in healthy children.  Am J Respir Crit Care Med. 1995;152(1):163-168.PubMedGoogle ScholarCrossref
Cabello  H, Torres  A, Celis  R,  et al.  Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study.  Eur Respir J. 1997;10(5):1137-1144.PubMedGoogle ScholarCrossref
Harris  KA, Hartley  JC.  Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service.  J Med Microbiol. 2003;52(Pt 8):685-691.PubMedGoogle ScholarCrossref
Original Investigation
October 2014

Changes in Gastric and Lung Microflora With Acid Suppression: Acid Suppression and Bacterial Growth

Author Affiliations
  • 1Aerodigestive Center, Department of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts
  • 2Clinical Research Center, Boston Children’s Hospital, Boston, Massachusetts
  • 3Center for Computational Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
  • 4Aerodigestive Center, Department of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
  • 5Department of Microbiology, Brigham and Women’s Hospital, Boston, Massachusetts
JAMA Pediatr. 2014;168(10):932-937. doi:10.1001/jamapediatrics.2014.696

Importance  The use of acid suppression has been associated with an increased risk of upper and lower respiratory tract infections in the outpatient setting but the mechanism behind this increased risk is unknown. We hypothesize that this infection risk results from gastric bacterial overgrowth with subsequent seeding of the lungs.

Objectives  To determine if acid-suppression use results in gastric bacterial overgrowth, if there are changes in lung microflora associated with the use of acid suppression, and if changes in lung microflora are related to full-column nonacid gastroesophageal reflux.

Design, Setting, and Participants  A 5-year prospective cohort study at a tertiary care center where children ages 1 to 18 years were undergoing bronchoscopy and endoscopy for the evaluation of chronic cough. Acid-suppression use was assessed through questionnaires with confirmation using an electronic medical record review.

Main Outcomes and Measures  Our primary outcome was to compare differences in concentration and prevalence of gastric and lung bacteria between patients who were and were not receiving acid-suppression therapy. We compared medians using the Wilcoxon signed rank test and determined prevalence ratios using asymptotic standard errors and 95% confidence intervals. We determined correlations between continuous variables using Pearson correlation coefficients and compared categorical variables using the Fisher exact test.

Results  Forty-six percent of patients taking acid-suppression medication had gastric bacterial growth compared with 18% of untreated patients (P = .003). Staphylococcus (prevalence ratio, 12.75 [95% CI, 1.72-94.36]), Streptococcus (prevalence ratio, 6.91 [95% CI, 1.64-29.02]), Veillonella (prevalence ratio, 9.56 [95% CI, 1.26-72.67]), Dermabacter (prevalence ratio, 4.78 [95% CI, 1.09-21.02]), and Rothia (prevalence ratio, 6.38 [95% CI, 1.50-27.02]) were found more commonly in the gastric fluid of treated patients. The median bacterial concentration was higher in treated patients than in untreated patients (P = .001). There was no difference in the prevalence (P > .23) of different bacterial genera or the median concentration of total bacteria (P = .85) in the lungs between treated and untreated patients. There were significant positive correlations between proximal nonacid reflux burden and lung concentrations of Bacillus (r = 0.47, P = .005), Dermabacter (r = 0.37, P = .008), Lactobacillus (r = 0.45, P = .001), Peptostreptococcus (r = 0.37, P = .008), and Capnocytophagia (r = 0.37, P = .008).

Conclusions and Relevance  Acid-suppression use results in gastric bacterial overgrowth of genera including Staphylococcus and Streptococcus. Full-column nonacid reflux is associated with greater concentrations of bacteria in the lung. Additional studies are needed to determine if acid suppression–related microflora changes predict clinical infection risk; these results suggest that acid suppression use may need to be limited in patients at risk for infections.