Associations Between Genetic Obesity Susceptibility and Early Postnatal Fat and Lean Mass: An Individual Participant Meta-analysis | Child Development | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Lakshman  R, Elks  CE, Ong  KK.  Childhood obesity.  Circulation. 2012;126(14):1770-1779. PubMedGoogle ScholarCrossref
2.
Baird  J, Fisher  D, Lucas  P, Kleijnen  J, Roberts  H, Law  C.  Being big or growing fast: systematic review of size and growth in infancy and later obesity.  BMJ. 2005;331(7522):929. doi:10.1136/bmj.38586.411273.E0.PubMedGoogle ScholarCrossref
3.
Druet  C, Stettler  N, Sharp  S,  et al.  Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis.  Paediatr Perinat Epidemiol. 2012;26(1):19-26.PubMedGoogle ScholarCrossref
4.
Adair  LS, Fall  CHD, Osmond  C,  et al; COHORTS group.  Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies.  Lancet. 2013;382(9891):525-534.PubMedGoogle ScholarCrossref
5.
Wells  JCK, Chomtho  S, Fewtrell  MS.  Programming of body composition by early growth and nutrition.  Proc Nutr Soc. 2007;66(3):423-434.PubMedGoogle ScholarCrossref
6.
Elks  CE, Loos  RJF, Sharp  SJ,  et al.  Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth.  PLoS Med. 2010;7(5):e1000284. doi:10.1371/journal.pmed.1000284.PubMedGoogle ScholarCrossref
7.
Warrington  NM, Howe  LD, Wu  YY,  et al.  Association of a body mass index genetic risk score with growth throughout childhood and adolescence.  PLoS One. 2013;8(11):e79547. doi:10.1371/journal.pone.0079547. PubMedGoogle ScholarCrossref
8.
Belsky  DW, Moffitt  TE, Houts  R,  et al.  Polygenic risk, rapid childhood growth, and the development of obesity: evidence from a 4-decade longitudinal study.  Arch Pediatr Adolesc Med. 2012;166(6):515-521.PubMedGoogle Scholar
9.
Speliotes  EK, Willer  CJ, Berndt  SI,  et al; MAGICProcardis Consortium.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index.  Nat Genet. 2010;42(11):937-948.PubMedGoogle ScholarCrossref
10.
Ong  KK, Langkamp  M, Ranke  MB,  et al.  Insulin-like growth factor I concentrations in infancy predict differential gains in body length and adiposity: the Cambridge Baby Growth Study.  Am J Clin Nutr. 2009;90(1):156-161.PubMedGoogle ScholarCrossref
11.
Inskip  HM, Godfrey  KM, Robinson  SM, Law  CM, Barker  DJP, Cooper  C; SWS Study Group.  Cohort profile: the Southampton Women’s Survey.  Int J Epidemiol. 2006;35(1):42-48.PubMedGoogle ScholarCrossref
12.
Robinson  S, Marriott  L, Poole  J,  et al; Southampton Women’s Survey Study Group.  Dietary patterns in infancy: the importance of maternal and family influences on feeding practice.  Br J Nutr. 2007;98(5):1029-1037.PubMedGoogle ScholarCrossref
13.
Moon  RJ, Harvey  NC, Robinson  SM,  et al; SWS Study Group.  Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood.  J Clin Endocrinol Metab. 2013;98(1):299-307.PubMedGoogle ScholarCrossref
14.
Drouillet  P, Forhan  A, De Lauzon-Guillain  B,  et al.  Maternal fatty acid intake and fetal growth: evidence for an association in overweight women: the “EDEN mother-child” cohort (study of pre- and early postnatal determinants of the child’s development and health).  Br J Nutr. 2009;101(4):583-591.PubMedGoogle ScholarCrossref
15.
López-Bermejo  A, Petry  CJ, Díaz  M,  et al.  The association between the FTO gene and fat mass in humans develops by the postnatal age of two weeks.  J Clin Endocrinol Metab. 2008;93(4):1501-1505.PubMedGoogle ScholarCrossref
16.
Goran  MI, Kaskoun  MC, Carpenter  WH, Poehlman  ET, Ravussin  E, Fontvieille  AM.  Estimating body composition of young children by using bioelectrical resistance.  J Appl Physiol (1985). 1993;75(4):1776-1780.PubMedGoogle Scholar
17.
Brook  CG.  Determination of body composition of children from skinfold measurements.  Arch Dis Child. 1971;46(246):182-184.PubMedGoogle ScholarCrossref
18.
Li  S, Zhao  JH, Luan  J,  et al.  Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies.  Am J Clin Nutr. 2010;91(1):184-190.PubMedGoogle ScholarCrossref
19.
Freeman  JV, Cole  TJ, Chinn  S, Jones  PR, White  EM, Preece  MA.  Cross sectional stature and weight reference curves for the UK, 1990.  Arch Dis Child. 1995;73(1):17-24.PubMedGoogle ScholarCrossref
20.
Mei  H, Chen  W, Jiang  F,  et al.  Longitudinal replication studies of GWAS risk SNPs influencing body mass index over the course of childhood and adulthood.  PLoS One. 2012;7(2):e31470. doi:10.1371/journal.pone.0031470.PubMedGoogle ScholarCrossref
21.
Sovio  U, Mook-Kanamori  DO, Warrington  NM,  et al; Early Growth Genetics Consortium.  Association between common variation at the FTO locus and changes in body mass index from infancy to late childhood: the complex nature of genetic association through growth and development.  PLoS Genet. 2011;7(2):e1001307. doi:10.1371/journal.pgen.1001307.PubMedGoogle ScholarCrossref
22.
Elks  CE, Perry  JR, Sulem  P,  et al; GIANT Consortium.  Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies.  Nat Genet. 2010;42(12):1077-1085. PubMedGoogle ScholarCrossref
23.
Wells  JCK, Hallal  PC, Wright  A, Singhal  A, Victora  CG.  Fetal, infant and childhood growth: relationships with body composition in Brazilian boys aged 9 years.  Int J Obes (Lond). 2005;29(10):1192–1198. PubMedGoogle ScholarCrossref
24.
Wilson  HJ, Dickinson  F, Hoffman  DJ, Griffiths  PL, Bogin  B, Varela-Silva  MI.  Fat free mass explains the relationship between stunting and energy expenditure in urban Mexican Maya children.  Ann Hum Biol. 2012;39(5):432-439.PubMedGoogle ScholarCrossref
25.
Walker  SP, Gaskin  P, Powell  CA, Bennett  FI, Forrester  TE, Grantham-McGregor  S.  The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11-12 years.  J Epidemiol Community Health. 2001;55(6):394-398.PubMedGoogle ScholarCrossref
26.
Gale  C, Logan  KM, Santhakumaran  S, Parkinson  JRC, Hyde  MJ, Modi  N.  Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis.  Am J Clin Nutr. 2012;95(3):656-669.PubMedGoogle ScholarCrossref
27.
Han  DY, Murphy  R, Morgan  AR,  et al.  Reduced genetic influence on childhood obesity in small for gestational age children.  BMC Med Genet. 2013;14:10. doi:10.1186/1471-2350-14-10. PubMedGoogle ScholarCrossref
28.
Kilpeläinen  TO, den Hoed  M, Ong  KK,  et al; Early Growth Genetics Consortium.  Obesity-susceptibility loci have a limited influence on birth weight: a meta-analysis of up to 28,219 individuals.  Am J Clin Nutr. 2011;93(4):851-860.PubMedGoogle ScholarCrossref
29.
Heid  IM, Jackson  AU, Randall  JC,  et al; MAGIC.  Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.  Nat Genet. 2010;42(11):949-960.PubMedGoogle ScholarCrossref
30.
Wells  JCK, Cole  TJ; ALSPAC study steam.  Adjustment of fat-free mass and fat mass for height in children aged 8 y.  Int J Obes Relat Metab Disord. 2002;26(7):947-952.PubMedGoogle ScholarCrossref
31.
Llewellyn  CH, Trzaskowski  M, van Jaarsveld  CHM, Plomin  R, Wardle  J.  Satiety mechanisms in genetic risk of obesity.  JAMA Pediatr. 2014;168(4):338-344.PubMedGoogle ScholarCrossref
32.
Karlberg  J.  A biologically-oriented mathematical model (ICP) for human growth.  Acta Paediatr Scand Suppl. 1989;350:70-94.PubMedGoogle ScholarCrossref
Original Investigation
December 2014

Associations Between Genetic Obesity Susceptibility and Early Postnatal Fat and Lean Mass: An Individual Participant Meta-analysis

Author Affiliations
  • 1Medical Research Council Epidemiology Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
  • 2Institut National de la Santé et de la Recherche Médicale, Center for Research in Epidemiology and Population Health, Lifelong Epidemiology of Obesity, Diabetes and Renal Disease Team, Villejuif, France
  • 3Medical Faculty, University Paris-Sud, Villejuif, France
  • 4Paediatric Endocrinology, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium
  • 5Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, England
  • 6Institut de Cardiometabolism and Nutrition, Centre de Recherche en Nutrition Humaine lle de France, Pitié-Salpêtrière Hospital, Paris, France
  • 7Institut National de la Santé et de la Recherche Médicale U872 team Nutriomique, Paris, France
  • 8National Institute of Health Research, Nutrition Biomedical Research Centre, University of Southampton, Southampton, England
  • 9Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, England
  • 10Department of Endocrinology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
  • 11Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
JAMA Pediatr. 2014;168(12):1122-1130. doi:10.1001/jamapediatrics.2014.1619
Abstract

Importance  Patterns of body size and body composition associated with genetic obesity susceptibility inform the mechanisms that increase obesity risk.

Objective  To test associations between genetic obesity susceptibility, represented by a combined obesity risk-allele score, and body size or body composition at birth to age 5 years.

Design, Setting, and Participants  A total of 3031 children from 4 birth cohort studies in England, France, and Spain were included in a meta-analysis.

Exposures  A combined obesity risk-allele score was calculated from genotypes at 16 variants identified by genome-wide association studies of adult body mass index (BMI).

Main Outcomes and Measures  Outcomes were age- and sex-adjusted SD scores (SDS) for weight, length/height, BMI, fat mass, lean mass, and percentage of body fat at birth as well as at ages 1, 2 to 3, and 4 to 5 years.

Results  The obesity risk-allele score was not associated with infant size at birth; at age 1 year it was positively associated with weight (β [SE], 0.020 [0.008] SDS per allele; P = .009) and length (β [SE], 0.020 [0.008] SDS per allele; P = .01), but not with BMI (β [SE], 0.013 [0.008] SDS per allele; P = .11). At age 2 to 3 years these associations were stronger (weight: β [SE], 0.033 [0.008] SDS per allele; P < .001; height: β [SE], 0.025 [0.008] SDS per allele; P < .001) and were also seen for BMI (β [SE], 0.024 [0.008] SDS per allele; P = .003). The obesity risk-allele score was positively associated with both postnatal fat mass (1 year: β [SE], 0.032 [0.017] SDS per allele; P = .05; 2-3 years: β [SE], 0.049 [0.018] SDS per allele; P = .006; and 4-5 years: β [SE], 0.028 [0.011] SDS per allele; P = .009) and postnatal lean mass (1 year: β [SE], 0.038 [0.014] SDS per allele; P = .008; 2-3 years: β [SE], 0.064 [0.017] SDS per allele; P < .001; and 4-5 years: β [SE], 0.047 [0.011] SDS per allele; P < .001), but not with the percentage of body fat (P > .15 at all ages).

Conclusions and Relevance  Genetic obesity susceptibility appears to promote a normally partitioned increase in early postnatal, but not prenatal, growth. These findings suggest that symmetrical rapid growth may identify infants with high life-long susceptibility for obesity.

×