Folic Acid Supplements During Pregnancy and Child Psychomotor Development After the First Year of Life | Child Development | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Burdge  GC, Lillycrop  KA.  Folic acid supplementation in pregnancy: are there devils in the detail?  Br J Nutr. 2012;108(11):1924-1930.PubMedGoogle ScholarCrossref
2.
Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline.  Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academies Press; 1998.
3.
Reynolds  E.  Vitamin B12, folic acid, and the nervous system.  Lancet Neurol. 2006;5(11):949-960.PubMedGoogle ScholarCrossref
4.
Georgieff  MK.  Nutrition and the developing brain: nutrient priorities and measurement.  Am J Clin Nutr. 2007;85(2):614S-620S.PubMedGoogle Scholar
5.
Benton  D; ILSI Europe a.i.s.b.l.  Micronutrient status, cognition and behavioral problems in childhood.  Eur J Nutr. 2008;47(3)(suppl 3):38-50.PubMedGoogle ScholarCrossref
6.
Gross  RL, Newberne  PM, Reid  JVO.  Adverse effects on infant development associated with maternal folic acid deficiency.  Nutr Rep Int. 1974;10:241-248.Google Scholar
7.
Wehby  GL, Murray  JC.  The effects of prenatal use of folic acid and other dietary supplements on early child development.  Matern Child Health J. 2008;12(2):180-187.PubMedGoogle ScholarCrossref
8.
Julvez  J, Fortuny  J, Mendez  M, Torrent  M, Ribas-Fitó  N, Sunyer  J.  Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort.  Paediatr Perinat Epidemiol. 2009;23(3):199-206.PubMedGoogle ScholarCrossref
9.
Roza  SJ, van Batenburg-Eddes  T, Steegers  EAP,  et al.  Maternal folic acid supplement use in early pregnancy and child behavioural problems: the Generation R Study.  Br J Nutr. 2010;103(3):445-452.PubMedGoogle ScholarCrossref
10.
Schlotz  W, Jones  A, Phillips  DIW, Gale  CR, Robinson  SM, Godfrey  KM.  Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring.  J Child Psychol Psychiatry. 2010;51(5):594-602.PubMedGoogle ScholarCrossref
11.
Roth  C, Magnus  P, Schjølberg  S,  et al.  Folic acid supplements in pregnancy and severe language delay in children.  JAMA. 2011;306(14):1566-1573.PubMedGoogle ScholarCrossref
12.
Steenweg-de Graaff  J, Roza  SJ, Steegers  EA,  et al.  Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study.  Am J Clin Nutr. 2012;95(6):1413-1421.PubMedGoogle ScholarCrossref
13.
Chatzi  L, Papadopoulou  E, Koutra  K,  et al.  Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: the mother-child cohort “Rhea” study in Crete, Greece.  Public Health Nutr. 2012;15(9):1728-1736.PubMedGoogle ScholarCrossref
14.
Villamor  E, Rifas-Shiman  SL, Gillman  MW, Oken  E.  Maternal intake of methyl-donor nutrients and child cognition at 3 years of age.  Paediatr Perinat Epidemiol. 2012;26(4):328-335.PubMedGoogle ScholarCrossref
15.
Surén  P, Roth  C, Bresnahan  M,  et al.  Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children.  JAMA. 2013;309(6):570-577.PubMedGoogle ScholarCrossref
16.
Veena  SR, Krishnaveni  GV, Srinivasan  K,  et al.  Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India.  J Nutr. 2010;140(5):1014-1022.PubMedGoogle ScholarCrossref
17.
del Río Garcia  C, Torres-Sánchez  L, Chen  J,  et al.  Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment.  Nutr Neurosci. 2009;12(1):13-20.PubMedGoogle ScholarCrossref
18.
Dobó  M, Czeizel  AE.  Long-term somatic and mental development of children after periconceptional multivitamin supplementation.  Eur J Pediatr. 1998;157(9):719-723.PubMedGoogle ScholarCrossref
19.
Tamura  T, Goldenberg  RL, Chapman  VR, Johnston  KE, Ramey  SL, Nelson  KG.  Folate status of mothers during pregnancy and mental and psychomotor development of their children at five years of age.  Pediatrics. 2005;116(3):703-708.PubMedGoogle ScholarCrossref
20.
Ferguson  SA, Berry  KJ, Hansen  DK, Wall  KS, White  G, Antony  AC.  Behavioral effects of prenatal folate deficiency in mice.  Birth Defects Res A Clin Mol Teratol. 2005;73(4):249-252.PubMedGoogle ScholarCrossref
21.
Craciunescu  CN, Brown  EC, Mar  M-H, Albright  CD, Nadeau  MR, Zeisel  SH.  Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain.  J Nutr. 2004;134(1):162-166.PubMedGoogle Scholar
22.
Eichholzer  M, Tönz  O, Zimmermann  R.  Folic acid: a public-health challenge.  Lancet. 2006;367(9519):1352-1361.PubMedGoogle ScholarCrossref
23.
Takimoto  H, Hayashi  F, Kusama  K,  et al.  Elevated maternal serum folate in the third trimester and reduced fetal growth: a longitudinal study.  J Nutr Sci Vitaminol (Tokyo). 2011;57(2):130-137.PubMedGoogle ScholarCrossref
24.
Pastor-Valero  M, Navarrete-Muñoz  EM, Rebagliato  M,  et al.  Periconceptional folic acid supplementation and anthropometric measures at birth in a cohort of pregnant women in Valencia, Spain.  Br J Nutr. 2011;105(9):1352-1360.PubMedGoogle ScholarCrossref
25.
Mikael  LG, Deng  L, Paul  L, Selhub  J, Rozen  R.  Moderately high intake of folic acid has a negative impact on mouse embryonic development.  Birth Defects Res A Clin Mol Teratol. 2013;97(1):47-52.PubMedGoogle ScholarCrossref
26.
Pickell  L, Brown  K, Li  D,  et al.  High intake of folic acid disrupts embryonic development in mice.  Birth Defects Res A Clin Mol Teratol. 2011;91(1):8-19.PubMedGoogle ScholarCrossref
27.
Guxens  M, Ballester  F, Espada  M,  et al; INMA Project.  Cohort profile: the INMA—INfancia y Medio Ambiente—(Environment and Childhood) Project.  Int J Epidemiol. 2012;41(4):930-940.PubMedGoogle ScholarCrossref
28.
Bayley  N.  Escalas Bayley de Desarrollo Infantil. Madrid, Spain: TEA Ediciones; 1977.
29.
Royston  P, Wright  EM.  A method for estimating age-specific reference intervals (“normal ranges”) based on fractional polynomials and exponential transformation.  J R Stat Soc Ser A Stat Soc. 1998;161(1):79-101. doi:10.1111/1467-985X.00091.Google ScholarCrossref
30.
Becker  G.  Creating comparability among reliability coefficients: the case of Cronbach alpha and Cohen kappa.  Psychol Rep. 2000;87(3, pt 2):1171-1182.PubMedGoogle ScholarCrossref
31.
Willett  WC, Sampson  L, Stampfer  MJ,  et al.  Reproducibility and validity of a semiquantitative food frequency questionnaire.  Am J Epidemiol. 1985;122(1):51-65.PubMedGoogle Scholar
32.
Vioque  J, Navarrete-Muñoz  E-M, Gimenez-Monzó  D,  et al; INMA-Valencia Cohort Study.  Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area.  Nutr J. 2013;12:26.PubMedGoogle ScholarCrossref
33.
Agricultural Research Service, US Department of Agriculture. USDA National Nutrient Database for Standard Reference, Release 25. http://www.ars.usda.gov/Main/site_main.htm?modecode=12-35-45-00. Accessed February 17, 2013.
34.
Palma  I, Farran  A, Cantós  D; Centro de Enseñanza Superior de Nutrición y Dietética.  Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en España. Madrid, Spain: McGraw-Hill, Interamericana de España; 2008.
35.
Willett  W. Reproducibility and validity of food-frequency questionnaires. In: Willett W. Nutritional Epidemiology. 3rd ed. New York, NY: Oxford University Press; 2012:101-147.
36.
Higgins  JPT, Thompson  SG, Deeks  JJ, Altman  DG.  Measuring inconsistency in meta-analyses.  BMJ. 2003;327(7414):557-560.PubMedGoogle ScholarCrossref
37.
Czeizel  AE, Dudás  I.  Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation.  N Engl J Med. 1992;327(26):1832-1835.PubMedGoogle ScholarCrossref
38.
Martínez-Frías  ML; Grupo de trabajo del ECEMC.  Folic acid dose in the prevention of congenital defects [in Spanish].  Med Clin (Barc). 2007;128(16):609-616.PubMedGoogle ScholarCrossref
39.
Navarrete-Muñoz  EM, Giménez Monzó  D, García de La Hera  M,  et al.  Folic acid intake from diet and supplements in a population of pregnant women in Valencia, Spain [in Spanish].  Med Clin (Barc). 2010;135(14):637-643.PubMedGoogle ScholarCrossref
40.
Sanfélix-Gimeno  G, Ferreros  I, Librero  J, Peiró  S.  Characterization of folate supplementation in pregnancy, based on a combination of health information systems [in Spanish].  Gac Sanit. 2012;26(6):512-518.PubMedGoogle ScholarCrossref
41.
Tam  C, O’Connor  D, Koren  G.  Circulating unmetabolized folic acid: relationship to folate status and effect of supplementation.  Obstet Gynecol Int. 2012;2012:485179.PubMedGoogle Scholar
42.
Obeid  R, Kasoha  M, Kirsch  SH, Munz  W, Herrmann  W.  Concentrations of unmetabolized folic acid and primary folate forms in pregnant women at delivery and in umbilical cord blood.  Am J Clin Nutr. 2010;92(6):1416-1422.PubMedGoogle ScholarCrossref
43.
van Batenburg-Eddes  T, de Groot  L, Arends  L,  et al.  Does gestational duration within the normal range predict infant neuromotor development?  Early Hum Dev. 2008;84(10):659-665.PubMedGoogle ScholarCrossref
44.
van Batenburg-Eddes  T, de Groot  L, Steegers  EAP,  et al.  Fetal programming of infant neuromotor development: the Generation R Study.  Pediatr Res. 2010;67(2):132-137.PubMedGoogle ScholarCrossref
45.
Campos  JJ, Anderson  DI, Barbu-Roth  MA, Hubbard  EM, Hertenstein  MJ, Witherington  D.  Travel broadens the mind.  Infancy. 2000;1(2):149-219. doi:10.1207/S15327078IN0102_1.Google ScholarCrossref
46.
Murray  GK, Veijola  J, Moilanen  K,  et al.  Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study.  J Child Psychol Psychiatry. 2006;47(1):25-29.PubMedGoogle ScholarCrossref
47.
Piek  JP, Dawson  L, Smith  LM, Gasson  N.  The role of early fine and gross motor development on later motor and cognitive ability.  Hum Mov Sci. 2008;27(5):668-681.PubMedGoogle ScholarCrossref
Original Investigation
November 3, 2014

Folic Acid Supplements During Pregnancy and Child Psychomotor Development After the First Year of Life

Author Affiliations
  • 1Consorcio de Investigación Biomédica de Epidemiología y Salud Pública, Madrid, Spain
  • 2Department of Public Health, History of Science, and Gynecology, Miguel Hernández University, Sant Joan d’Alacant Campus, Sant Joan d’Alacant, Spain
  • 3University of Oviedo, Asturias, Spain
  • 4Centre for Research in Environmental Epidemiology, Barcelona, Spain
  • 5Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
  • 6Subdirección de Salud Pública de Gipuzkoa, San Sebastian, Spain
  • 7Centre of Public Health Research, Valencia, Spain
  • 8James I University, Castelló de la Plana, Spain
JAMA Pediatr. 2014;168(11):e142611. doi:10.1001/jamapediatrics.2014.2611
Abstract

Importance  Folate intake during pregnancy has been associated with improved neuropsychological development in children, although the effects of high dosages of folic acid (FA) supplements are unclear.

Objective  To examine the association between the use of high dosages of FA supplements during pregnancy and child neuropsychological development after the first year of life.

Design, Setting, and Patients  The multicenter prospective mother-child cohort Infancia y Medio Ambiente (INMA) Project recruited pregnant women from 4 areas of Spain (Asturias, Sabadell, Gipuzkoa, and Valencia) between November 2003 and January 2008. Pregnant women completed an interviewer-administered questionnaire on the usual dietary folate intake and FA supplements at 10 to 13 weeks and 28 to 32 weeks of gestation. The main analyses were based on a sample of 2213 children with complete information on neuropsychological development and FA supplement intake during pregnancy. Multiple linear and logistic regression analyses were used to explore the effects of FA supplements on child neuropsychological development.

Main Outcomes and Measures  Neuropsychological development was assessed using the Bayley Scales of Infant Development. We calculated mental scale and psychomotor scale scores. One SD below the mean established a delay in neurodevelopment (score <85).

Results  A high proportion of women (57.3%) did not reach the recommended dosages of FA supplements (400 μg/d), but 25.2% women took more than 1000 μg/d of FA supplements (3.5% consuming >5000 μg/d). In multivariate analysis, we observed that children whose mothers used FA supplement dosages higher than 5000 μg/d during pregnancy had a statistically significantly lower mean psychomotor scale score (difference, −4.35 points; 95% CI, −8.34 to −0.36) than children whose mothers used a recommended dosage of FA supplements (400-1000 μg/d). An increased risk of delayed psychomotor development (psychomotor scale score <85) was also evident among children whose mothers took FA supplement dosages higher than 5000 μg/d, although the association was not statistically significant (odds ratio = 1.59; 95% CI, 0.82-3.08).

Conclusions and Relevance  To our knowledge, this is the first time a detrimental effect of high dosages of FA supplements during pregnancy on psychomotor development after the first year of life has been shown. Further research from longitudinal studies is warranted to confirm these results.

×