Effect of Early Institutionalization and Foster Care on Long-term White Matter Development: A Randomized Clinical Trial | Child Development | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Fox  SE, Levitt  P, Nelson  CA  III.  How the timing and quality of early experiences influence the development of brain architecture.  Child Dev. 2010;81(1):28-40.PubMedGoogle ScholarCrossref
2.
Tottenham  N, Hare  TA, Quinn  BT,  et al.  Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation.  Dev Sci. 2010;13(1):46-61.PubMedGoogle ScholarCrossref
3.
Hanson  JL, Nacewicz  BM, Sutterer  MJ,  et al.  Behavioral problems after early life stress: contributions of the hippocampus and amygdala [published online May 23, 2014].  Biol Psychiatry. doi:10.1016/j.biopsych.2014.04.020.PubMedGoogle Scholar
4.
McLaughlin  KA, Sheridan  MA, Winter  W, Fox  NA, Zeanah  CH, Nelson  CA.  Widespread reductions in cortical thickness following severe early-life deprivation: a neurodevelopmental pathway to attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2014;76(8):629-638.PubMedGoogle ScholarCrossref
5.
Eluvathingal  TJ, Chugani  HT, Behen  ME,  et al.  Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study.  Pediatrics. 2006;117(6):2093-2100.PubMedGoogle ScholarCrossref
6.
Kumar  A, Behen  ME, Singsoonsud  P,  et al.  Microstructural abnormalities in language and limbic pathways in orphanage-reared children: a diffusion tensor imaging study.  J Child Neurol. 2014;29(3):318-325.PubMedGoogle ScholarCrossref
7.
Hanson  JL, Adluru  N, Chung  MK, Alexander  AL, Davidson  RJ, Pollak  SD.  Early neglect is associated with alterations in white matter integrity and cognitive functioning.  Child Dev. 2013;84(5):1566-1578.PubMedGoogle ScholarCrossref
8.
Behen  ME, Muzik  O, Saporta  AS,  et al.  Abnormal fronto-striatal connectivity in children with histories of early deprivation: a diffusion tensor imaging study.  Brain Imaging Behav. 2009;3(3):292-297.PubMedGoogle ScholarCrossref
9.
Govindan  RM, Behen  ME, Helder  E, Makki  MI, Chugani  HT.  Altered water diffusivity in cortical association tracts in children with early deprivation identified with tract-based spatial statistics (TBSS).  Cereb Cortex. 2010;20(3):561-569.PubMedGoogle ScholarCrossref
10.
Nelson  CA  III, Zeanah  CH, Fox  NA, Marshall  PJ, Smyke  AT, Guthrie  D.  Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project.  Science. 2007;318(5858):1937-1940.PubMedGoogle ScholarCrossref
11.
Olsavsky  AK, Telzer  EH, Shapiro  M,  et al.  Indiscriminate amygdala response to mothers and strangers after early maternal deprivation.  Biol Psychiatry. 2013;74(11):853-860.PubMedGoogle ScholarCrossref
12.
Sheridan  MA, Fox  NA, Zeanah  CH, McLaughlin  KA, Nelson  CA  III.  Variation in neural development as a result of exposure to institutionalization early in childhood.  Proc Natl Acad Sci U S A. 2012;109(32):12927-12932.PubMedGoogle ScholarCrossref
13.
Zeanah  CH, Nelson  CA, Fox  NA,  et al.  Designing research to study the effects of institutionalization on brain and behavioral development: the Bucharest Early Intervention Project.  Dev Psychopathol. 2003;15(4):885-907.PubMedGoogle ScholarCrossref
14.
Smith  SM, Jenkinson  M, Johansen-Berg  H,  et al.  Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.  Neuroimage. 2006;31(4):1487-1505.PubMedGoogle ScholarCrossref
15.
Douaud  G, Jbabdi  S, Behrens  TE,  et al.  DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease.  Neuroimage. 2011;55(3):880-890.PubMedGoogle ScholarCrossref
16.
Mori  S, Oishi  K, Jiang  H,  et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template.  Neuroimage. 2008;40(2):570-582.PubMedGoogle ScholarCrossref
17.
Mori  S, van Zijl  PC.  Diffusion weighting by the trace of the diffusion tensor within a single scan.  Magn Reson Med. 1995;33(1):41-52.PubMedGoogle ScholarCrossref
18.
Als  H, Duffy  FH, McAnulty  GB,  et al.  Early experience alters brain function and structure.  Pediatrics. 2004;113(4):846-857.PubMedGoogle ScholarCrossref
19.
Milgrom  J, Newnham  C, Anderson  PJ,  et al.  Early sensitivity training for parents of preterm infants: impact on the developing brain.  Pediatr Res. 2010;67(3):330-335.PubMedGoogle ScholarCrossref
20.
Greenough  WT, Black  JE, Wallace  CS.  Experience and brain development.  Child Dev. 1987;58(3):539-559.PubMedGoogle ScholarCrossref
21.
De Bellis  MD.  Developmental traumatology: a contributory mechanism for alcohol and substance use disorders.  Psychoneuroendocrinology. 2002;27(1-2):155-170.PubMedGoogle ScholarCrossref
22.
Teicher  MH, Dumont  NL, Ito  Y, Vaituzis  C, Giedd  JN, Andersen  SL.  Childhood neglect is associated with reduced corpus callosum area.  Biol Psychiatry. 2004;56(2):80-85.PubMedGoogle ScholarCrossref
23.
Seckfort  DL, Paul  R, Grieve  SM,  et al.  Early life stress on brain structure and function across the lifespan: a preliminary study.  Brain Imaging Behav. 2008;2:49-58.Google ScholarCrossref
24.
Jackowski  AP, Douglas-Palumberi  H, Jackowski  M,  et al.  Corpus callosum in maltreated children with posttraumatic stress disorder: a diffusion tensor imaging study.  Psychiatry Res. 2008;162(3):256-261.PubMedGoogle ScholarCrossref
25.
Lyoo  IK, Noam  GG, Lee  CK, Lee  HK, Kennedy  BP, Renshaw  PF.  The corpus callosum and lateral ventricles in children with attention-deficit hyperactivity disorder: a brain magnetic resonance imaging study.  Biol Psychiatry. 1996;40(10):1060-1063.PubMedGoogle ScholarCrossref
26.
Preis  S, Steinmetz  H, Knorr  U, Jäncke  L.  Corpus callosum size in children with developmental language disorder.  Brain Res Cogn Brain Res. 2000;10(1-2):37-44.PubMedGoogle ScholarCrossref
27.
Zeanah  CH, Egger  HL, Smyke  AT,  et al.  Institutional rearing and psychiatric disorders in Romanian preschool children.  Am J Psychiatry. 2009;166(7):777-785.PubMedGoogle ScholarCrossref
28.
Azmitia  EC, Segal  M.  An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat.  J Comp Neurol. 1978;179(3):641-667.PubMedGoogle ScholarCrossref
29.
Goldman-Rakic  PS, Selemon  LD, Schwartz  ML.  Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey.  Neuroscience. 1984;12(3):719-743.PubMedGoogle ScholarCrossref
30.
Choi  J, Jeong  B, Rohan  ML, Polcari  AM, Teicher  MH.  Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse.  Biol Psychiatry. 2009;65(3):227-234.PubMedGoogle ScholarCrossref
31.
Wang  Y, Horst  KK, Kronenberger  WG,  et al.  White matter abnormalities associated with disruptive behavior disorder in adolescents with and without attention-deficit/hyperactivity disorder.  Psychiatry Res. 2012;202(3):245-251.PubMedGoogle ScholarCrossref
32.
Kim  SJ, Jeong  DU, Sim  ME,  et al.  Asymmetrically altered integrity of cingulum bundle in posttraumatic stress disorder.  Neuropsychobiology. 2006;54(2):120-125.PubMedGoogle ScholarCrossref
33.
Pavuluri  MN, Yang  S, Kamineni  K,  et al.  Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2009;65(7):586-593.PubMedGoogle ScholarCrossref
34.
Bos  KJ, Fox  N, Zeanah  CH, Nelson Iii  CA.  Effects of early psychosocial deprivation on the development of memory and executive function.  Front Behav Neurosci. 2009;3:16.PubMedGoogle ScholarCrossref
35.
Bos  K, Zeanah  CH, Fox  NA, Drury  SS, McLaughlin  KA, Nelson  CA.  Psychiatric outcomes in young children with a history of institutionalization.  Harv Rev Psychiatry. 2011;19(1):15-24.PubMedGoogle ScholarCrossref
36.
Rothbart  MK, Sheese  BE, Rueda  MR, Posner  MI.  Developing mechanisms of self-regulation in early life.  Emot Rev. 2011;3(2):207-213.PubMedGoogle ScholarCrossref
37.
Nagel  BJ, Bathula  D, Herting  M,  et al.  Altered white matter microstructure in children with attention-deficit/hyperactivity disorder.  J Am Acad Child Adolesc Psychiatry. 2011;50(3):283-292.PubMedGoogle ScholarCrossref
38.
Lin  F, Zhou  Y, Du  Y,  et al.  Abnormal white matter integrity in adolescents with internet addiction disorder: a tract-based spatial statistics study.  PLoS One. 2012;7(1):e30253. doi:10.1371/journal.pone.0030253.PubMedGoogle ScholarCrossref
39.
Hasan  KM.  Diffusion tensor eigenvalues or both mean diffusivity and fractional anisotropy are required in quantitative clinical diffusion tensor MR reports: fractional anisotropy alone is not sufficient.  Radiology. 2006;239(2):611-612.PubMedGoogle ScholarCrossref
Original Investigation
March 2015

Effect of Early Institutionalization and Foster Care on Long-term White Matter Development: A Randomized Clinical Trial

Author Affiliations
  • 1Division of Developmental Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
  • 2Department of Radiation Oncology, University of Michigan, Ann Arbor
  • 3Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
  • 4Department of Human Development, University of Maryland, College Park
  • 5Department of Psychiatry, Tulane University Health Science Center, New Orleans, Louisiana
  • 6Harvard Graduate School of Education, Division of Developmental Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Cambridge, Massachusetts
JAMA Pediatr. 2015;169(3):211-219. doi:10.1001/jamapediatrics.2014.3212
Abstract

Importance  Severe neglect in early life is associated with compromises in brain development and associated behavioral functioning. Although early intervention has been shown to support more normative trajectories of brain development, specific improvements in the white matter pathways that underlie emotional and cognitive development are unknown.

Objective  To examine associations among neglect in early life, early intervention, and the microstructural integrity of white matter pathways in middle childhood.

Design, Setting, and Participants  The Bucharest Early Intervention Project is a randomized clinical trial of high-quality foster care as an intervention for institutionally reared children in Bucharest, Romania, from 2000 through the present. During infancy, children were randomly selected to remain in an institution or to be placed in foster care. Those who remained in institutions experienced neglect, including social, emotional, linguistic, and cognitive impoverishment. Developmental trajectories of these children were compared with a group of sociodemographically matched children reared in biological families at baseline and several points throughout development. At approximately 8 years of age, 69 of the original 136 children underwent structural magnetic resonance imaging scans.

Main Outcomes and Measures  Four estimates of white matter integrity (fractional anisotropy [FA] and mean [MD], radial [RD], and axial [AD] diffusivity) for 48 white matter tracts throughout the brain were obtained through diffusion tensor imaging.

Results  Significant associations emerged between neglect in early life and microstructural integrity of the body of the corpus callosum (FA, β = 0.01 [P = .01]; RD, β = −0.02 [P = .005]; MD, β = −0.01 [P = .02]) and tracts involved in limbic circuitry (fornix crus [AD, β = 0.02 (P = .046)] and cingulum [RD, β = −0.01 (P = .02); MD, β = −0.01 (P = .049)]), frontostriatal circuitry (anterior [AD, β = −0.01 (P = .02)] and superior [AD, β = −0.02 (P = .02); MD, β = −0.01 (P = .03)] corona radiata and external capsule [right FA, β = 0.01 (P = .03); left FA, β = 0.01 (P = .03); RD, β = −0.01 (P = .01); MD, β = −0.01 (P = .03)]), and sensory processing (medial lemniscus [AD, β = −0.02 (P = .045); MD, β = −0.01 (P = .04)] and retrolenticular internal capsule [FA, β = −0.01 (P = .002); RD, β = 0.01 (P = .003); MD, β = 0.01 (P = .04)]). Follow-up analyses revealed that early intervention promoted more normative white matter development among previously neglected children who entered foster care.

Conclusions and Relevance  Results suggest that removal from conditions of neglect in early life and entry into a high-quality family environment can support more normative trajectories of white matter growth. Our findings have implications for public health and policy efforts designed to promote normative brain development among vulnerable children.

Trial Registration  clinicaltrials.gov Identifier: NCT00747396

×