Hospital Variation and Risk Factors for Bronchopulmonary Dysplasia in a Population-Based Cohort | Critical Care Medicine | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Horbar  JD, Carpenter  JH, Badger  GJ,  et al.  Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009.  Pediatrics. 2012;129(6):1019-1026.PubMedGoogle ScholarCrossref
Klinger  G, Sokolover  N, Boyko  V,  et al.  Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants.  Am J Obstet Gynecol.2013;208(2):115.e1-9. PubMedGoogle ScholarCrossref
Laughon  MM, Langer  JC, Bose  CL,  et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants.  Am J Respir Crit Care Med. 2011;183(12):1715-1722.PubMedGoogle ScholarCrossref
Stoll  BJ, Hansen  NI, Bell  EF,  et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network.  Pediatrics. 2010;126(3):443-456.PubMedGoogle ScholarCrossref
Northway  WH  Jr, Rosan  RC, Porter  DY.  Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia.  N Engl J Med. 1967;276(7):357-368.PubMedGoogle ScholarCrossref
Husain  AN, Siddiqui  NH, Stocker  JT.  Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia.  Hum Pathol. 1998;29(7):710-717.PubMedGoogle ScholarCrossref
Jobe  AH, Bancalari  E.  Bronchopulmonary dysplasia.  Am J Respir Crit Care Med. 2001;163(7):1723-1729.PubMedGoogle ScholarCrossref
Kinsella  JP, Greenough  A, Abman  SH.  Bronchopulmonary dysplasia.  Lancet. 2006;367(9520):1421-1431.PubMedGoogle ScholarCrossref
Ehrenkranz  RA, Walsh  MC, Vohr  BR,  et al; National Institutes of Child Health and Human Development Neonatal Research Network.  Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia.  Pediatrics. 2005;116(6):1353-1360.PubMedGoogle ScholarCrossref
Natarajan  G, Pappas  A, Shankaran  S,  et al.  Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition.  Early Hum Dev. 2012;88(7):509-515.PubMedGoogle ScholarCrossref
Van Marter  LJ.  Epidemiology of bronchopulmonary dysplasia.  Semin Fetal Neonatal Med. 2009;14(6):358-366.PubMedGoogle ScholarCrossref
Van Marter  LJ, Kuban  KC, Allred  E,  et al; ELGAN Study Investigators.  Does bronchopulmonary dysplasia contribute to the occurrence of cerebral palsy among infants born before 28 weeks of gestation?  Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F20-F29.PubMedGoogle ScholarCrossref
Landry  JS, Chan  T, Lands  L, Menzies  D.  Long-term impact of bronchopulmonary dysplasia on pulmonary function.  Can Respir J.2011;18(5):265-270. PubMedGoogle Scholar
Baraldi  E, Filippone  M.  Chronic lung disease after premature birth.  N Engl J Med. 2007;357(19):1946-1955.PubMedGoogle ScholarCrossref
McEvoy  CT, Jain  L, Schmidt  B, Abman  S, Bancalari  E, Aschner  JL.  Bronchopulmonary dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases.  Ann Am Thorac Soc. 2014;11(suppl 3):S146-S153.PubMedGoogle ScholarCrossref
Trembath  A, Laughon  MM.  Predictors of bronchopulmonary dysplasia.  Clin Perinatol. 2012;39(3):585-601.PubMedGoogle ScholarCrossref
Ambalavanan  N, Walsh  M, Bobashev  G,  et al; NICHD Neonatal Research Network.  Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants.  Pediatrics. 2011;127(1):e106-e116.PubMedGoogle ScholarCrossref
Avery  ME, Tooley  WH, Keller  JB,  et al.  Is chronic lung disease in low birth weight infants preventable? a survey of eight centers.  Pediatrics. 1987;79(1):26-30.PubMedGoogle Scholar
Van Marter  LJ, Allred  EN, Pagano  M,  et al.  Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? the Neonatology Committee for the Developmental Network.  Pediatrics. 2000;105(6):1194-1201.PubMedGoogle ScholarCrossref
Vohr  BR, Wright  LL, Dusick  AM,  et al; Neonatal Research Network.  Center differences and outcomes of extremely low birth weight infants.  Pediatrics. 2004;113(4):781-789.PubMedGoogle ScholarCrossref
Gagliardi  L, Bellù  R, Lista  G, Zanini  R; Network Neonatale Lombardo Study Group.  Do differences in delivery room intubation explain different rates of bronchopulmonary dysplasia between hospitals?  Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F30-F35.PubMedGoogle ScholarCrossref
Gould  JB, Marks  AR, Chavez  G.  Expansion of community-based perinatal care in California.  J Perinatol.2002;22(8):630-640. PubMedGoogle ScholarCrossref
Lasswell  SM, Barfield  WD, Rochat  RW, Blackmon  L.  Perinatal regionalization for very low-birth-weight and very preterm infants: a meta-analysis.  JAMA. 2010;304(9):992-1000.PubMedGoogle ScholarCrossref
Lorch  SA, Baiocchi  M, Ahlberg  CE, Small  DS.  The differential impact of delivery hospital on the outcomes of premature infants.  Pediatrics. 2012;130(2):270-278.PubMedGoogle ScholarCrossref
Phibbs  CS, Baker  LC, Caughey  AB, Danielsen  B, Schmitt  SK, Phibbs  RH.  Level and volume of neonatal intensive care and mortality in very-low-birth-weight infants.  N Engl J Med. 2007;356(21):2165-2175.PubMedGoogle ScholarCrossref
Warner  B, Musial  MJ, Chenier  T, Donovan  E.  The effect of birth hospital type on the outcome of very low birth weight infants.  Pediatrics. 2004;113(1, pt 1):35-41.PubMedGoogle ScholarCrossref
Watson  SI, Arulampalam  W, Petrou  S,  et al; Neonatal Data Analysis Unit and the NESCOP Group.  The effects of designation and volume of neonatal care on mortality and morbidity outcomes of very preterm infants in England: retrospective population-based cohort study.  BMJ Open. 2014;4(7):e004856.PubMedGoogle ScholarCrossref
Walsh  MC, Szefler  S, Davis  J,  et al.  Summary proceedings from the bronchopulmonary dysplasia group.  Pediatrics. 2006;117(3 Pt 2):S52-S56.PubMedGoogle Scholar
American Academy of Pediatrics Committee on Fetus And Newborn.  Levels of neonatal care.  Pediatrics. 2012;130(3):587-597.PubMedGoogle ScholarCrossref
Stark  AR; American Academy of Pediatrics Committee on Fetus and Newborn.  Levels of neonatal care.  Pediatrics. 2004;114(5):1341-1347.PubMedGoogle ScholarCrossref
Hartling  L, Liang  Y, Lacaze-Masmonteil  T.  Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis.  Arch Dis Child Fetal Neonatal Ed. 2012;97(1):F8-F17.PubMedGoogle ScholarCrossref
Watterberg  KL, Demers  LM, Scott  SM, Murphy  S.  Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops.  Pediatrics. 1996;97(2):210-215.PubMedGoogle Scholar
Roberts  D, Dalziel  S.  Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.  Cochrane Database Syst Rev. 2006;(3):CD004454.PubMedGoogle Scholar
Payne  NR, LaCorte  M, Karna  P,  et al; Breathsavers Group, Vermont Oxford Network Neonatal Intensive Care Quality Improvement Collaborative.  Reduction of bronchopulmonary dysplasia after participation in the Breathsavers Group of the Vermont Oxford Network Neonatal Intensive Care Quality Improvement Collaborative.  Pediatrics. 2006;118(suppl 2):S73-S77.PubMedGoogle ScholarCrossref
Horbar  JD, Rogowski  J, Plsek  PE,  et al; NIC/Q Project Investigators of the Vermont Oxford Network.  Collaborative quality improvement for neonatal intensive care.  Pediatrics. 2001;107(1):14-22.PubMedGoogle ScholarCrossref
Walsh  M, Laptook  A, Kazzi  SN,  et al; National Institute of Child Health and Human Development Neonatal Research Network.  A cluster-randomized trial of benchmarking and multimodal quality improvement to improve rates of survival free of bronchopulmonary dysplasia for infants with birth weights of less than 1250 grams.  Pediatrics. 2007;119(5):876-890.PubMedGoogle ScholarCrossref
Wang  H, St Julien  KR, Stevenson  DK,  et al.  A genome-wide association study (GWAS) for bronchopulmonary dysplasia.  Pediatrics. 2013;132(2):290-297.PubMedGoogle ScholarCrossref
Fanaroff  AA, Stoll  BJ, Wright  LL,  et al; NICHD Neonatal Research Network.  Trends in neonatal morbidity and mortality for very low birthweight infants.  Am J Obstet Gynecol.2007;196(2):147.e1-8. PubMedGoogle ScholarCrossref
Walsh  MC, Yao  Q, Gettner  P,  et al; National Institute of Child Health and Human Development Neonatal Research Network.  Impact of a physiologic definition on bronchopulmonary dysplasia rates.  Pediatrics. 2004;114(5):1305-1311.PubMedGoogle ScholarCrossref
Lee  HC, Lyndon  A, Blumenfeld  YJ, Dudley  RA, Gould  JB.  Antenatal steroid administration for premature neonates in California.  Obstet Gynecol. 2011;117(3):603-609.PubMedGoogle ScholarCrossref
Original Investigation
February 2, 2015

Hospital Variation and Risk Factors for Bronchopulmonary Dysplasia in a Population-Based Cohort

Author Affiliations
  • 1Department of Pediatrics, Stanford University School of Medicine, Stanford, California
  • 2California Perinatal Quality Care Collaborative, Stanford, California
JAMA Pediatr. 2015;169(2):e143676. doi:10.1001/jamapediatrics.2014.3676

Importance  Bronchopulmonary dysplasia (BPD) remains a serious morbidity in very low-birth-weight (VLBW) infants (<1500 g). Deregionalization of neonatal care has resulted in an increasing number of VLBW infants treated in community hospitals with unknown impact on the development of BPD.

Objective  To identify individual risk factors for BPD development and hospital variation of BPD rates across all levels of neonatal intensive care units (NICUs) within the California Perinatal Quality Care Collaborative.

Design, Setting, and Participants  Retrospective cohort study (January 2007 to December 2011) from the California Perinatal Quality Care Collaborative including more than 90% of California’s NICUs. Eligible VLBW infants born between 22 to 29 weeks’ gestational age.

Exposures  Varying levels of intensive care.

Main Outcomes and Measures  Bronchopulmonary dysplasia was defined as continuous supplemental oxygen use at 36 weeks’ postmenstrual age. A combined outcome of BPD or mortality prior to 36 weeks was used. Multivariable logistic regression accounting for hospital as a random effect and gestational age as a risk factor was used to assess individual risk factors for BPD. This model was applied to determine risk-adjusted rates of BPD across hospitals and assess associations between levels of care and BPD rates.

Results  The study cohort included 15 779 infants, of which 1534 infants died prior to 36 weeks’ postmenstrual age. A total of 7081 infants, or 44.8%, met the primary outcome of BPD or death prior to 36 weeks. Combined BPD or death rates across 116 NICUs varied from 17.7% to 73.4% (interquartile range, 38.7%-54.1%). Compared with level IV NICUs, the risk for developing BPD was higher for level II NICUs (odds ratio, 1.23; 95% CI, 1.02-1.49) and similar for level III NICUs (odds ratio, 1.04; 95% CI, 0.95-1.14).

Conclusions and Relevance  Bronchopulmonary dysplasia or death prior to 36 weeks’ postmenstrual age affects approximately 45% of VLBW infants across California. The wide variability in BPD occurrence across hospitals could offer insights into potential risk or preventive factors. Additionally, our findings suggest that increased regionalization of NICU care may reduce BPD among VLBW infants.