Infant Growth and Risk of Childhood-Onset Type 1 Diabetes in Children From 2 Scandinavian Birth Cohorts | Child Development | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Harjutsalo  V, Sund  R, Knip  M, Groop  PH.  Incidence of type 1 diabetes in Finland.  JAMA. 2013;310(4):427-428.PubMedGoogle ScholarCrossref
Skrivarhaug  T, Stene  LC, Drivvoll  AK, Strøm  H, Joner  G; Norwegian Childhood Diabetes Study Group.  Incidence of type 1 diabetes in Norway among children aged 0-14 years between 1989 and 2012: has the incidence stopped rising? results from the Norwegian Childhood Diabetes Registry.  Diabetologia. 2014;57(1):57-62.PubMedGoogle ScholarCrossref
Patterson  CC, Gyürüs  E, Rosenbauer  J,  et al.  Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase.  Diabetologia. 2012;55(8):2142-2147.PubMedGoogle ScholarCrossref
Stene  LC, Gale  EA.  The prenatal environment and type 1 diabetes.  Diabetologia. 2013;56(9):1888-1897.PubMedGoogle ScholarCrossref
Baum  JD, Ounsted  M, Smith  MA.  Letter: weight gain in infancy and subsequent development of diabetes mellitus in childhood.  Lancet. 1975;2(7940):866.PubMedGoogle ScholarCrossref
EURODIAB Substudy 2 Study Group.  Rapid early growth is associated with increased risk of childhood type 1 diabetes in various European populations.  Diabetes Care. 2002;25(10):1755-1760.PubMedGoogle ScholarCrossref
Hyppönen  E, Kenward  MG, Virtanen  SM,  et al; Childhood Diabetes in Finland (DiMe) Study Group.  Infant feeding, early weight gain, and risk of type 1 diabetes.  Diabetes Care. 1999;22(12):1961-1965.PubMedGoogle ScholarCrossref
Johansson  C, Samuelsson  U, Ludvigsson  J.  A high weight gain early in life is associated with an increased risk of type 1 (insulin-dependent) diabetes mellitus.  Diabetologia. 1994;37(1):91-94.PubMedGoogle ScholarCrossref
Ljungkrantz  M, Ludvigsson  J, Samuelsson  U.  Type 1 diabetes: increased height and weight gains in early childhood.  Pediatr Diabetes. 2008;9(3, pt 2):50-56.PubMedGoogle ScholarCrossref
Svensson  J, Carstensen  B, Mortensen  HB, Borch-Johnsen  K.  Growth in the first year of life and the risk of type 1 diabetes in a Danish population.  Paediatr Perinat Epidemiol. 2007;21(1):44-48.PubMedGoogle ScholarCrossref
Beyerlein  A, Thiering  E, Pflueger  M,  et al.  Early infant growth is associated with the risk of islet autoimmunity in genetically susceptible children.  Pediatr Diabetes. 2014;15(7):534-542.PubMedGoogle ScholarCrossref
Couper  JJ, Beresford  S, Hirte  C,  et al.  Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes.  Diabetes Care. 2009;32(1):94-99.PubMedGoogle ScholarCrossref
Lamb  MM, Yin  X, Zerbe  GO,  et al.  Height growth velocity, islet autoimmunity and type 1 diabetes development: the Diabetes Autoimmunity Study in the Young.  Diabetologia. 2009;52(10):2064-2071.PubMedGoogle ScholarCrossref
Magnus  P, Irgens  LM, Haug  K, Nystad  W, Skjaerven  R, Stoltenberg  C; MoBa Study Group.  Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa).  Int J Epidemiol. 2006;35(5):1146-1150.PubMedGoogle ScholarCrossref
Nilsen  RM, Vollset  SE, Gjessing  HK,  et al.  Self-selection and bias in a large prospective pregnancy cohort in Norway.  Paediatr Perinat Epidemiol. 2009;23(6):597-608.PubMedGoogle ScholarCrossref
Nohr  EA, Frydenberg  M, Henriksen  TB, Olsen  J.  Does low participation in cohort studies induce bias?  Epidemiology. 2006;17(4):413-418.PubMedGoogle ScholarCrossref
Olsen  J, Melbye  M, Olsen  SF,  et al.  The Danish National Birth Cohort: its background, structure and aim.  Scand J Public Health. 2001;29(4):300-307.PubMedGoogle ScholarCrossref
Svensson  J, Lyngaae-Jørgensen  A, Carstensen  B, Simonsen  LB, Mortensen  HB; Danish Childhood Diabetes Registry.  Long-term trends in the incidence of type 1 diabetes in Denmark: the seasonal variation changes over time.  Pediatr Diabetes. 2009;10(4):248-254.PubMedGoogle ScholarCrossref
Pundziute-Lyckå  A, Persson  LA, Cedermark  G,  et al.  Diet, growth, and the risk for type 1 diabetes in childhood: a matched case-referent study.  Diabetes Care. 2004;27(12):2784-2789.PubMedGoogle ScholarCrossref
Blom  L, Persson  LA, Dahlquist  G.  A high linear growth is associated with an increased risk of childhood diabetes mellitus.  Diabetologia. 1992;35(6):528-533.PubMedGoogle ScholarCrossref
Bruining  GJ; Netherlands Kolibrie Study Group of Childhood Diabetes.  Association between infant growth before onset of juvenile type-1 diabetes and autoantibodies to IA-2.  Lancet. 2000;356(9230):655-656.PubMedGoogle ScholarCrossref
Kharagjitsingh  AV, de Ridder  MA, Roep  BO, Koeleman  BP, Bruining  GJ, Veeze  HJ.  Revisiting infant growth prior to childhood onset type 1 diabetes.  Clin Endocrinol (Oxf). 2010;72(5):620-624.PubMedGoogle ScholarCrossref
Larsson  HE, Hansson  G, Carlsson  A,  et al; DiPiS Study Group.  Children developing type 1 diabetes before 6 years of age have increased linear growth independent of HLA genotypes.  Diabetologia. 2008;51(9):1623-1630.PubMedGoogle ScholarCrossref
Júlíusson  PB, Roelants  M, Eide  GE,  et al.  Growth references for Norwegian children [in Norwegian].  Tidsskr Nor Laegeforen. 2009;129(4):281-286.PubMedGoogle ScholarCrossref
Baird  J, Fisher  D, Lucas  P, Kleijnen  J, Roberts  H, Law  C.  Being big or growing fast: systematic review of size and growth in infancy and later obesity.  BMJ. 2005;331(7522):929.PubMedGoogle ScholarCrossref
Kharagjitsingh  A, de Ridder  M, Alizadeh  B,  et al.  Genetic correlates of early accelerated infant growth associated with juvenile-onset type 1 diabetes.  Pediatr Diabetes. 2012;13(3):266-271.PubMedGoogle ScholarCrossref
Peet  A, Hämäläinen  AM, Kool  P, Ilonen  J, Knip  M, Tillmann  V; DIABIMMUNE Study Group.  Early postnatal growth in children with HLA-conferred susceptibility to type 1 diabetes.  Diabetes Metab Res Rev. 2014;30(1):60-68.PubMedGoogle ScholarCrossref
Lambertini  L.  Genomic imprinting: sensing the environment and driving the fetal growth.  Curr Opin Pediatr. 2014;26(2):237-242.PubMedGoogle ScholarCrossref
Nerup  J, Mandrup-Poulsen  T, Mølvig  J, Helqvist  S, Wogensen  L, Egeberg  J.  Mechanisms of pancreatic beta-cell destruction in type I diabetes.  Diabetes Care. 1988;11(suppl 1):16-23.PubMedGoogle Scholar
Atkinson  MA, Chervonsky  A.  Does the gut microbiota have a role in type 1 diabetes? early evidence from humans and animal models of the disease.  Diabetologia. 2012;55(11):2868-2877.PubMedGoogle ScholarCrossref
White  RA, Bjørnholt  JV, Baird  DD,  et al.  Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth.  PLoS Comput Biol. 2013;9(5):e1003042.PubMedGoogle ScholarCrossref
Bluestone  JA, Herold  K, Eisenbarth  G.  Genetics, pathogenesis and clinical interventions in type 1 diabetes.  Nature. 2010;464(7293):1293-1300.PubMedGoogle ScholarCrossref
Cabrera  SM, Henschel  AM, Hessner  MJ.  Innate inflammation in type 1 diabetes [published online April 29, 2015].  Transl Res. doi:10.1016/j.trsl.2015.04.011.Google Scholar
Original Investigation
December 7, 2015

Infant Growth and Risk of Childhood-Onset Type 1 Diabetes in Children From 2 Scandinavian Birth Cohorts

Author Affiliations
  • 1Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
  • 2Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
  • 3Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • 4Department of Pediatrics, Oslo University Hospital, Oslo, Norway
  • 5Department of Pediatrics, Copenhagen University Hospital, Herlev, Denmark
  • 6Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
  • 7KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
  • 8Institute Management and Staff, Norwegian Institute of Public Health, Oslo, Norway
  • 9Department of Pediatrics, Ostfold Hospital Trust, Fredrikstad, Norway
JAMA Pediatr. 2015;169(12):e153759. doi:10.1001/jamapediatrics.2015.3759

Importance  Type 1 diabetes mellitus is one of the most common chronic diseases with onset in childhood, but environmental risk factors have not been convincingly established.

Objective  To test whether increased growth during the first year of life is associated with higher risk of childhood-onset type 1 diabetes.

Design, Setting, and Participants  This is a cohort study using information from 2 population-based cohort studies in Norway and Denmark, the Norwegian Mother and Child Cohort Study (MoBa) and the Danish National Birth Cohort (DNBC), of children born between February 1998 and July 2009. The current study was conducted between November 2014 and June 2015.

Exposures  Change in weight and length from birth to age 12 months.

Main Outcomes and Measures  Unadjusted and adjusted hazard ratios (HRs) of type 1 diabetes, classified based on nationwide childhood diabetes registers, obtained using Cox proportional hazards regression.

Results  A total of 99 832 children were included in the study, with 59 221 in MoBa (51.2% boys and 48.8% girls; mean age at end of follow-up, 8.6 years [range, 4.6-14.2 years]) and 40 611 in DNBC (50.6% boys and 49.4% girls; mean age at end of follow-up, 13.0 years [range, 10.4-15.7 years]). The incidence rate of type 1 diabetes from age 12 months to the end of follow-up was 25 cases per 100 000 person-years in DNBC and 31 cases per 100 000 person-years in MoBa. The change in weight from birth to 12 months was positively associated with type 1 diabetes (pooled unadjusted HR = 1.24 per 1-SD increase; 95% CI, 1.11-1.39; pooled adjusted HR = 1.24 per 1-SD increase; 95% CI, 1.09-1.41). There was no significant association between length increase from birth to 12 months and type 1 diabetes (pooled unadjusted HR = 1.06 per 1-SD increase; 95% CI, 0.93-1.22; pooled adjusted HR = 1.06 per 1-SD increase; 95% CI, 0.86-1.32). The associations were similar in both sexes.

Conclusions and Relevance  This is the first prospective population-based study, to our knowledge, providing evidence that weight increase during the first year of life is positively associated with type 1 diabetes. This supports the early environmental origins of type 1 diabetes.