Late Surfactant Administration in Very Preterm Neonates With Prolonged Respiratory Distress and Pulmonary Outcome at 1 Year of Age: A Randomized Clinical Trial | Congenital Defects | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
LeFlore  JL, Salhab  WA, Broyles  RS, Engle  WD.  Association of antenatal and postnatal dexamethasone exposure with outcomes in extremely low birth weight neonates.  Pediatrics. 2002;110(2, pt 1):275-279.PubMedGoogle ScholarCrossref
2.
Hamon  I, Hascoet  JM.  Perinatal corticotherapy: updates [in French].  J Gynecol Obstet Biol Reprod (Paris). 2001;30(6)(suppl):S50-S53.PubMedGoogle Scholar
3.
Morley  CJ, Davis  PG, Doyle  LW, Brion  LP, Hascoet  JM, Carlin  JB; COIN Trial Investigators.  Nasal CPAP or intubation at birth for very preterm infants.  N Engl J Med. 2008;358(7):700-708.PubMedGoogle ScholarCrossref
4.
Sandri  F, Plavka  R, Ancora  G,  et al; CURPAP Study Group.  Prophylactic or early selective surfactant combined with nCPAP in very preterm infants.  Pediatrics. 2010;125(6):e1402-e1409.PubMedGoogle ScholarCrossref
5.
Finer  NN, Carlo  WA, Walsh  MC,  et al; SUPPORT Study Group of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Early CPAP versus surfactant in extremely preterm infants.  N Engl J Med. 2010;362(21):1970-1979.PubMedGoogle ScholarCrossref
6.
Halliday  HL.  Recent clinical trials of surfactant treatment for neonates.  Biol Neonate. 2006;89(4):323-329.PubMedGoogle ScholarCrossref
7.
Parker  RA, Lindstrom  DP, Cotton  RB.  Improved survival accounts for most, but not all, of the increase in bronchopulmonary dysplasia.  Pediatrics. 1992;90(5):663-668.PubMedGoogle Scholar
8.
Redline  RW, Wilson-Costello  D, Hack  M.  Placental and other perinatal risk factors for chronic lung disease in very low birth weight infants.  Pediatr Res. 2002;52(5):713-719.PubMedGoogle ScholarCrossref
9.
Davis  PG, Thorpe  K, Roberts  R, Schmidt  B, Doyle  LW, Kirpalani  H; Trial Indomethacin Prophylaxis in Preterms Investigators.  Evaluating “old” definitions for the “new” bronchopulmonary dysplasia.  J Pediatr. 2002;140(5):555-560.PubMedGoogle ScholarCrossref
10.
Brozanski  BS, Jones  JG, Gilmour  CH,  et al.  Effect of pulse dexamethasone therapy on the incidence and severity of chronic lung disease in the very low birth weight infant.  J Pediatr. 1995;126(5, pt 1):769-776.PubMedGoogle ScholarCrossref
11.
Frank  L, Sosenko  IR.  Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rabbits.  Pediatr Res. 1991;29(3):292-296.PubMedGoogle ScholarCrossref
12.
Groneck  P, Götze-Speer  B, Oppermann  M, Eiffert  H, Speer  CP.  Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates.  Pediatrics. 1994;93(5):712-718.PubMedGoogle Scholar
13.
Pierce  MR, Bancalari  E.  The role of inflammation in the pathogenesis of bronchopulmonary dysplasia.  Pediatr Pulmonol. 1995;19(6):371-378.PubMedGoogle ScholarCrossref
14.
Moya  FR, Montes  HF, Thomas  VL, Mouzinho  AM, Smith  JF, Rosenfeld  CR.  Surfactant protein A and saturated phosphatidylcholine in respiratory distress syndrome.  Am J Respir Crit Care Med. 1994;150(6 Pt 1):1672-1677.PubMedGoogle ScholarCrossref
15.
Janssen  DJ, Carnielli  VP, Cogo  PE,  et al.  Surfactant phosphatidylcholine half-life and pool size measurements in premature baboons developing bronchopulmonary dysplasia.  Pediatr Res. 2002;52(5):724-729.PubMedGoogle ScholarCrossref
16.
Jobe  AH, Bancalari  E.  Bronchopulmonary dysplasia.  Am J Respir Crit Care Med. 2001;163(7):1723-1729.PubMedGoogle ScholarCrossref
17.
Albertine  KH, Jones  GP, Starcher  BC,  et al.  Chronic lung injury in preterm lambs: disordered respiratory tract development.  Am J Respir Crit Care Med. 1999;159(3):945-958.PubMedGoogle ScholarCrossref
18.
Jobe  AH, Ikegami  M.  Mechanisms initiating lung injury in the preterm.  Early Hum Dev. 1998;53(1):81-94.PubMedGoogle ScholarCrossref
19.
Matalon  S, Hu  P, Ischiropoulos  H, Beckman  JS.  Peroxynitrite inhibition of oxygen consumption and ion transport in alveolar type II pneumocytes.  Chest. 1994;105(3)(suppl):74S.PubMedGoogle ScholarCrossref
20.
Digeronimo  RJ, Mustafa  SB, Ryan  RM, Sternberg  ZZ, Ashton  DJ, Seidner  SR.  Mechanical ventilation down-regulates surfactant protein A and keratinocyte growth factor expression in premature rabbits.  Pediatr Res. 2007;62(3):277-282.PubMedGoogle ScholarCrossref
21.
Walsh  MC, Szefler  S, Davis  J,  et al.  Summary proceedings from the bronchopulmonary dysplasia group.  Pediatrics. 2006;117(3, pt 2):S52-S56.PubMedGoogle Scholar
22.
Maitre  NL, Ballard  RA, Ellenberg  JH,  et al; Prematurity and Respiratory Outcomes Program.  Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach.  J Perinatol. 2015;35(5):313-321.PubMedGoogle ScholarCrossref
23.
Su  BH, Watanabe  T, Shimizu  M, Yanagisawa  M.  Doppler assessment of pulmonary artery pressure in neonates at risk of chronic lung disease.  Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F23-F27.PubMedGoogle ScholarCrossref
24.
Clark  PL, Ekekezie  II, Kaftan  HA, Castor  CA, Truog  WE.  Safety and efficacy of nitric oxide in chronic lung disease.  Arch Dis Child Fetal Neonatal Ed. 2002;86(1):F41-F45.PubMedGoogle ScholarCrossref
25.
Skinner  JR, Boys  RJ, Heads  A, Hey  EN, Hunter  S.  Estimation of pulmonary arterial pressure in the newborn: study of the repeatability of four Doppler echocardiographic techniques.  Pediatr Cardiol. 1996;17(6):360-369.PubMedGoogle ScholarCrossref
26.
Brunet  O, Lézine  I, Josse  D,  et al.  Brunet-Lézine Révise: Echelle de Developpement Psychomoteur de la Petite Enfance: Manuel BLR-C. Paris, France: Editions et Applications Psychologiques; 2001.
27.
Hascoët  JM, Fresson  J, Claris  O,  et al.  The safety and efficacy of nitric oxide therapy in premature infants.  J Pediatr. 2005;146(3):318-323.PubMedGoogle ScholarCrossref
28.
Tremblay  LN, Slutsky  AS.  Pathogenesis of ventilator-induced lung injury: trials and tribulations.  Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L596-L598.PubMedGoogle ScholarCrossref
29.
Keller  RL, Merrill  JD, Black  DM,  et al.  Late administration of surfactant replacement therapy increases surfactant protein-B content: a randomized pilot study.  Pediatr Res. 2012;72(6):613-619.PubMedGoogle ScholarCrossref
30.
Katz  LA, Klein  JM.  Repeat surfactant therapy for postsurfactant slump.  J Perinatol. 2006;26(7):414-422.PubMedGoogle ScholarCrossref
31.
Paananen  R, Husa  AK, Vuolteenaho  R, Herva  R, Kaukola  T, Hallman  M.  Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia.  J Pediatr. 2009;154(1):39-43.e3.PubMedGoogle ScholarCrossref
32.
Schneibel  KR, Fitzpatrick  AM, Ping  XD, Brown  LAS, Gauthier  TW.  Inflammatory mediator patterns in tracheal aspirate and their association with bronchopulmonary dysplasia in very low birth weight neonates.  J Perinatol. 2013;33(5):383-387.PubMedGoogle ScholarCrossref
33.
Marshall  DD, Kotelchuck  M, Young  TE, Bose  CL, Kruyer  L, O’Shea  TM; North Carolina Neonatologists Association.  Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants.  Pediatrics. 1999;104(6):1345-1350.PubMedGoogle ScholarCrossref
34.
el Hanache  A, Gourrier  E, Karoubi  P, Merbouche  S, Mouchnino  G, Leraillez  J.  Modification of C-reactive protein after instillation of natural exogenous surfactants [Modification de la protéine C réactive après instillation de surfactant exogène naturel in French].  Arch Pediatr. 1997;4(1):27-31.PubMedGoogle ScholarCrossref
35.
Kukkonen  AK, Virtanen  M, Järvenpää  AL, Pokela  ML, Ikonen  S, Fellman  V.  Randomized trial comparing natural and synthetic surfactant: increased infection rate after natural surfactant?  Acta Paediatr. 2000;89(5):556-561.PubMedGoogle ScholarCrossref
36.
Ballard  RA, Truog  WE, Cnaan  A,  et al; NO CLD Study Group.  Inhaled nitric oxide in preterm infants undergoing mechanical ventilation.  N Engl J Med. 2006;355(4):343-353.PubMedGoogle ScholarCrossref
37.
Ballard  PL, Merrill  JD, Truog  WE,  et al.  Surfactant function and composition in premature infants treated with inhaled nitric oxide.  Pediatrics. 2007;120(2):346-353.PubMedGoogle ScholarCrossref
38.
Davis  JM, Parad  RB, Michele  T, Allred  E, Price  A, Rosenfeld  W; North American Recombinant Human CuZnSOD Study Group.  Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase.  Pediatrics. 2003;111(3):469-476.PubMedGoogle ScholarCrossref
39.
de Hoog  MLA, Venekamp  RP, van der Ent  CK,  et al.  Impact of early daycare on healthcare resource use related to upper respiratory tract infections during childhood: prospective WHISTLER cohort study.  BMC Med. 2014;12:107.PubMedGoogle ScholarCrossref
Original Investigation
April 2016

Late Surfactant Administration in Very Preterm Neonates With Prolonged Respiratory Distress and Pulmonary Outcome at 1 Year of Age: A Randomized Clinical Trial

Author Affiliations
  • 1Maternite Regionale Universitaire, EA 3450 Devah, Université de Lorraine, Nancy, France
  • 2Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
  • 3Assistance Publique-Hopitaux Marseille, Marseille, France
  • 4Centre Hospitalier Universitaire Rouen, Rouen, France
  • 5 Centre Hospitalier Universitaire Amiens, Amiens, France
  • 6 Centre Hospitalier Montreuil, Montreuil, France
  • 7Assistance Publique-Hopitaux Clamart, Clamart, France
  • 8Centre Hospitalier Arras, Arras, France
  • 9Centre Hospitalier Universitaire Caen, Caen, France
  • 10Centre Hospitalier Universitaire Tours, Tours, France
  • 11Centre Hospitalier Universitaire Lille, Lille, France
  • 12Assistance Publique-Hopitaux Paris Port Royal, Paris, France
  • 13Centre Hospitalier Universitaire Reims, Reims, France
  • 14Maternite Regionale Universitaire, EA 4360 APEMAC, Université de Lorraine, Nancy, France
JAMA Pediatr. 2016;170(4):365-372. doi:10.1001/jamapediatrics.2015.4617
Abstract

Importance  Although immature neonate survival has improved, there is an increased risk of developing bronchopulmonary dysplasia, leading to significant respiratory morbidity. Measures to reduce bronchopulmonary dysplasia are not always effective or have important adverse effects.

Objective  To evaluate the effect of late surfactant administration in infants with prolonged respiratory distress on ventilation duration, respiratory outcome at 36 weeks’ postmenstrual age, and at 1 year postnatal age.

Design, Setting, and Participants  Double-blind randomized clinical trial at 13 level III French perinatal centers. Participants included 118 neonates at less than 33 weeks’ gestation who still required mechanical ventilation on day 14 (SD, 2) with fraction of inspired oxygen of more than 0.30. All survivors were eligible for follow-up. We performed an intent-to-treat analysis.

Interventions  Infants received 200 mg/kg of poractant alfa (surfactant) or air after randomization. At 1 year, after parents’ interview, infants underwent physical examination by pediatricians not aware of the randomization.

Main Outcomes and Measures  The duration of ventilation was the primary outcome. The combined outcome of death or bronchopulmonary dysplasia at 36 weeks’ postmenstrual age and respiratory morbidity at 1 year of age were the main secondary outcome measures.

Results  Of the 118 infants who participated in the study, 65 (55%) were male. Fraction of inspired oxygen requirements dropped after surfactant, but not air, for up to 24 hours after instillation (0.36 [0.11] vs 0.43 [0.18]; P < .005). Severe bronchopulmonary dysplasia/death rates at 36 weeks’ postmenstrual age were similar (27.1% vs 35.6%; P = .32). Less surfactant-treated infants needed rehospitalization for respiratory problems after discharge (28.3% vs 51.1%; P = .03); 39.5% vs 50% needed respiratory physical therapy (P = .35). No difference was observed for weight (7.8 [1.2] kg vs 7.6 [1.1] kg), height (69 [5] cm vs 69 [3] cm), and head circumference (44.4 [1.7] cm vs 44.2 [1.7] cm) measured at follow-up, nor for neurodevelopment outcome.

Conclusions and Relevance  Late surfactant administration did not alter the early course of bronchopulmonary dysplasia. However, surfactant-treated infants had reduced respiratory morbidity prior to 1 year of age.

Trial Registration  clinicaltrials.gov Identifier: NCT01039285

×