Epidemiological and Economic Effects of Priming With the Whole-Cell Bordetella pertussis Vaccine | Infectious Diseases | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Jackson  DW, Rohani  P.  Perplexities of pertussis: recent global epidemiological trends and their potential causes.  Epidemiol Infect. 2014;142(4):672-684.PubMedGoogle ScholarCrossref
2.
Centers for Disease Control and Prevention. Pertussis (whooping cough): surveillance and reporting. http://www.cdc.gov/pertussis/surv-reporting.html. Accessed March 17, 2015.
3.
Elam-Evans  LD, Yankey  D, Singleton  JA, Kolasa  M; Centers for Disease Control and Prevention (CDC).  National, state, and selected local area vaccination coverage among children aged 19-35 months: United States, 2013.  MMWR Morb Mortal Wkly Rep. 2014;63(34):741-748.PubMedGoogle Scholar
4.
World Health Organization.  Global routine vaccination coverage, 2013.  Wkly Epidemiol Rec. 2014;21(47):571-578.Google Scholar
5.
Warfel  JM, Zimmerman  LI, Merkel  TJ.  Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model.  Proc Natl Acad Sci U S A. 2014;111(2):787-792.PubMedGoogle ScholarCrossref
6.
Edwards  KM.  Unraveling the challenges of pertussis.  Proc Natl Acad Sci U S A. 2014;111(2):575-576.PubMedGoogle ScholarCrossref
7.
Althouse  BM, Scarpino  SV.  Asymptomatic transmission and the resurgence of Bordetella pertussis.  BMC Med. 2015;13(1):146.PubMedGoogle ScholarCrossref
8.
Castagnini  LA, Healy  CM, Rench  MA, Wootton  SH, Munoz  FM, Baker  CJ.  Impact of maternal postpartum tetanus and diphtheria toxoids and acellular pertussis immunization on infant pertussis infection.  Clin Infect Dis. 2012;54(1):78-84.PubMedGoogle ScholarCrossref
9.
Healy  CM, Rench  MA, Wootton  SH, Castagnini  LA.  Evaluation of the impact of a pertussis cocooning program on infant pertussis infection.  Pediatr Infect Dis J. 2015;34(1):22-26.PubMedGoogle ScholarCrossref
10.
Meade  BD, Plotkin  SA, Locht  C.  Possible options for new pertussis vaccines.  J Infect Dis. 2014;209(suppl 1):S24-S27.PubMedGoogle ScholarCrossref
11.
Thorstensson  R, Trollfors  B, Al-Tawil  N,  et al.  A phase I clinical study of a live attenuated Bordetella pertussis vaccine, BPZE1: a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers.  PLoS One. 2014;9(1):e83449.PubMedGoogle ScholarCrossref
12.
Locht  C, Mielcarek  N.  Live attenuated vaccines against pertussis.  Expert Rev Vaccines. 2014;13(9):1147-1158.PubMedGoogle ScholarCrossref
13.
Liko  J, Robison  SG, Cieslak  PR.  Priming with whole-cell versus acellular pertussis vaccine.  N Engl J Med. 2013;368(6):581-582.PubMedGoogle ScholarCrossref
14.
Witt  MA, Arias  L, Katz  PH, Truong  ET, Witt  DJ.  Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort.  Clin Infect Dis. 2013;56(9):1248-1254.PubMedGoogle ScholarCrossref
15.
Sheridan  SL, Ware  RS, Grimwood  K, Lambert  SB.  Number and order of whole cell pertussis vaccines in infancy and disease protection.  JAMA. 2012;308(5):454-456.PubMedGoogle ScholarCrossref
16.
Hethcote  HW.  An age-structured model for pertussis transmission.  Math Biosci. 1997;145(2):89-136.PubMedGoogle ScholarCrossref
17.
Centers for Disease Control and Prevention. Vaccine information statements (VIS): Diphtheria, Tetanus, and Pertussis (DTaP) VIS. http://www.cdc.gov/vaccines/hcp/vis/vis-statements/dtap.html. Accessed February 2, 2015.
18.
McGarry  LJ, Krishnarajah  G, Hill  G,  et al.  Cost-effectiveness of Tdap vaccination of adults aged ≥65 years in the prevention of pertussis in the US: a dynamic model of disease transmission.  PLoS One. 2014;9(1):e72723.PubMedGoogle ScholarCrossref
19.
Howson CP, Howe CJ, Fineberg HV, eds. Adverse effects of pertussis and rubella vaccines. Washington, DC: National Academies Press; 1991.
20.
Ray  P, Hayward  J, Michelson  D,  et al; Vaccine Safety Datalink Group.  Encephalopathy after whole-cell pertussis or measles vaccination: lack of evidence for a causal association in a retrospective case-control study.  Pediatr Infect Dis J. 2006;25(9):768-773.PubMedGoogle ScholarCrossref
21.
Agency for Healthcare Research and Quality. HCUP: overview of the National (Nationwide) Inpatient Sample (NIS). http://www.hcup-us.ahrq.gov/nisoverview.jsp. Published 2012. Accessed June 2, 2014.
22.
Lee  GM, Lett  S, Schauer  S,  et al; Massachusetts Pertussis Study Group.  Societal costs and morbidity of pertussis in adolescents and adults.  Clin Infect Dis. 2004;39(11):1572-1580.PubMedGoogle ScholarCrossref
23.
Lee  GM, Murphy  TV, Lett  S,  et al.  Cost effectiveness of pertussis vaccination in adults.  Am J Prev Med. 2007;32(3):186-193.PubMedGoogle ScholarCrossref
24.
Sassi  F.  Calculating QALYs, comparing QALY and DALY calculations.  Health Policy Plan. 2006;21(5):402-408.PubMedGoogle ScholarCrossref
25.
Arias  E.  United states life tables, 2008.  Natl Vital Stat Rep. 2012;61(3):1-63. PubMedGoogle Scholar
26.
World Health Organization. Pertussis. http://www.who.int/biologicals/vaccines/pertussis/en/. Accessed May 19, 2015.
27.
World Health Organization.  Pertussis vaccines: WHO position paper.  Wkly Epidemiol Rec. 2010;85(40):385-400.PubMedGoogle Scholar
28.
Wearing  HJ, Rohani  P.  Estimating the duration of pertussis immunity using epidemiological signatures.  PLoS Pathog. 2009;5(10):e1000647.PubMedGoogle ScholarCrossref
29.
Wendelboe  AM, Van Rie  A, Salmaso  S, Englund  JA.  Duration of immunity against pertussis after natural infection or vaccination.  Pediatr Infect Dis J. 2005;24(5)(suppl):S58-S61.PubMedGoogle ScholarCrossref
30.
Edwards  KM, Berbers  GA.  Immune responses to pertussis vaccines and disease.  J Infect Dis. 2014;209(suppl 1):S10-S15.PubMedGoogle ScholarCrossref
31.
Warfel  JM, Edwards  KM.  Pertussis vaccines and the challenge of inducing durable immunity.  Curr Opin Immunol. 2015;35:48-54.PubMedGoogle ScholarCrossref
32.
Williams  WW, Lu  P-J, O’Halloran  A,  et al; Centers for Disease Control and Prevention (CDC).  Noninfluenza vaccination coverage among adults: United States, 2012.  MMWR Morb Mortal Wkly Rep. 2014;63(5):95-102.PubMedGoogle Scholar
33.
Dabrera  G, Amirthalingam  G, Andrews  N,  et al.  A case-control study to estimate the effectiveness of maternal pertussis vaccination in protecting newborn infants in England and Wales, 2012-2013.  Clin Infect Dis. 2015;60(3):333-337.PubMedGoogle ScholarCrossref
34.
Kharbanda  EO, Vazquez-Benitez  G, Lipkind  HS,  et al.  Evaluation of the association of maternal pertussis vaccination with obstetric events and birth outcomes.  JAMA. 2014;312(18):1897-1904.PubMedGoogle ScholarCrossref
35.
Amirthalingam  G, Andrews  N, Campbell  H,  et al.  Effectiveness of maternal pertussis vaccination in England: an observational study.  Lancet. 2014;384(9953):1521-1528.PubMedGoogle ScholarCrossref
36.
Atkins  KE, Fitzpatrick  MC, Galvani  AP, Townsend  JP.  Cost-effectiveness of pertussis vaccination during pregnancy in the US.  Am J Epidemiol. In press.Google Scholar
37.
Plotkin  SA.  The pertussis problem.  Clin Infect Dis. 2014;58(6):830-833.PubMedGoogle ScholarCrossref
Original Investigation
May 2016

Epidemiological and Economic Effects of Priming With the Whole-Cell Bordetella pertussis Vaccine

Author Affiliations
  • 1New Mexico State University, Las Cruces
  • 2Santa Fe Institute, Santa Fe, New Mexico
  • 3Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut
  • 4Yale Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
JAMA Pediatr. 2016;170(5):459-465. doi:10.1001/jamapediatrics.2016.0047
Abstract

Importance  Current acellular pertussis vaccines may not protect against transmission of Bordetella pertussis.

Objective  To assess whether a priming dose of whole-cell pertussis (wP) vaccine is cost-effective at reducing pertussis infection in infants.

Design, Setting, and Participants  Mathematical model of pertussis transmission fit to US incidence data in a simulation of the US population. In this simulation study conducted from June 2014 to May 2015, the population was divided into 9 age groups corresponding to the current pertussis vaccination schedule and fit to 2012 pertussis incidence.

Interventions  Inclusion of a priming dose of wP vaccine into the current acellular pertussis vaccination schedule.

Main Outcomes and Measures  Reductions in symptomatic pertussis incidence by age group, increases in wP vaccine–related adverse effects, and quality-adjusted life-years owing to changing vaccine schedule.

Results  Switching to a wP-priming vaccination strategy could reduce whooping cough incidence by up to 95% (95% CI, 91-98), including 96% (95% CI, 92-98) fewer infections in neonates. Although there may be an increase in the number of vaccine adverse effects, we nonetheless estimate a 95% reduction in quality-adjusted life-years lost with a switch to the combined strategy and a cost reduction of 94% (95% CI, 91-97), saving more than $142 million annually.

Conclusions and Relevance  Our results suggest that an alternative vaccination schedule including 1 dose of wP vaccine may be highly cost-effective and ethically preferred until next-generation pertussis vaccines become available.

×