Association of Early-Life Antibiotic Use and Protective Effects of Breastfeeding: Role of the Intestinal Microbiota | Breastfeeding | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Hörnell  A, Lagström  H, Lande  B, Thorsdottir  I.  Breastfeeding, introduction of other foods and effects on health: a systematic literature review for the 5th Nordic Nutrition Recommendations.  Food Nutr Res. 2013;57.PubMedGoogle Scholar
2.
Woo  JG, Martin  LJ.  Does breastfeeding protect against childhood obesity? moving beyond observational evidence.  Curr Obes Rep. 2015;4(2):207-216.PubMedGoogle ScholarCrossref
3.
Penders  J, Thijs  C, Vink  C,  et al.  Factors influencing the composition of the intestinal microbiota in early infancy.  Pediatrics. 2006;118(2):511-521.PubMedGoogle ScholarCrossref
4.
Ward  RE, Niñonuevo  M, Mills  DA, Lebrilla  CB, German  JB.  In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri Appl Environ Microbiol. 2006;72(6):4497-4499.PubMedGoogle ScholarCrossref
5.
Bäckhed  F, Roswall  J, Peng  Y,  et al.  Dynamics and stabilization of the human gut microbiome during the first year of life.  Cell Host Microbe. 2015;17(5):690-703.PubMedGoogle ScholarCrossref
6.
Ridaura  VK, Faith  JJ, Rey  FE,  et al.  Gut microbiota from twins discordant for obesity modulate metabolism in mice.  Science. 2013;341(6150):1241214.PubMedGoogle ScholarCrossref
7.
Cox  LM, Yamanishi  S, Sohn  J,  et al.  Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.  Cell. 2014;158(4):705-721.PubMedGoogle ScholarCrossref
8.
Cox  LM, Blaser  MJ.  Pathways in microbe-induced obesity.  Cell Metab. 2013;17(6):883-894.PubMedGoogle ScholarCrossref
9.
Kalliomäki  M, Collado  MC, Salminen  S, Isolauri  E.  Early differences in fecal microbiota composition in children may predict overweight.  Am J Clin Nutr. 2008;87(3):534-538.PubMedGoogle Scholar
10.
Dogra  S, Sakwinska  O, Soh  SE,  et al; GUSTO Study Group.  Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity.  MBio. 2015;6(1):e02419-14.PubMedGoogle ScholarCrossref
11.
Saari  A, Virta  LJ, Sankilampi  U, Dunkel  L, Saxen  H.  Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life.  Pediatrics. 2015;135(4):617-626.PubMedGoogle ScholarCrossref
12.
Grönlund  MM, Arvilommi  H, Kero  P, Lehtonen  OP, Isolauri  E.  Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months.  Arch Dis Child Fetal Neonatal Ed. 2000;83(3):F186-F192.PubMedGoogle ScholarCrossref
13.
Sjögren  YM, Tomicic  S, Lundberg  A,  et al.  Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses.  Clin Exp Allergy. 2009;39(12):1842-1851.PubMedGoogle ScholarCrossref
14.
Kumpu  M, Kekkonen  RA, Kautiainen  H,  et al.  Milk containing probiotic Lactobacillus rhamnosus GG and respiratory illness in children: a randomized, double-blind, placebo-controlled trial.  Eur J Clin Nutr. 2012;66(9):1020-1023.PubMedGoogle ScholarCrossref
15.
Korpela  K, Salonen  A, Virta  LJ,  et al.  Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children.  Nat Commun. 2016;7:10410.PubMedGoogle ScholarCrossref
16.
Edgar  RC, Haas  BJ, Clemente  JC, Quince  C, Knight  R.  UCHIME improves sensitivity and speed of chimera detection.  Bioinformatics. 2011;27(16):2194-2200.PubMedGoogle ScholarCrossref
17.
Caporaso  JG, Kuczynski  J, Stombaugh  J,  et al.  QIIME allows analysis of high-throughput community sequencing data.  Nat Methods. 2010;7(5):335-336.PubMedGoogle ScholarCrossref
18.
Korpela  K, Flint  HJ, Johnstone  AM,  et al.  Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals.  PLoS One. 2014;9(6):e90702.PubMedGoogle ScholarCrossref
19.
Venables  W, Ripley  B.  Modern Applied Statistics With S. 4th ed. New York, NY: Springer; 2002.
20.
Oksanen  J, Blanchet  FG, Kindt  R,  et al.  vegan: Community Ecology Package: R Package Version 2.0-6. Vienna, Austria: R Foundation for Statistical Computing; 2013.
21.
Owen  CG, Martin  RM, Whincup  PH, Davey-Smith  G, Gillman  MW, Cook  DG.  The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence.  Am J Clin Nutr. 2005;82(6):1298-1307.PubMedGoogle Scholar
22.
Brown  A, Lee  M.  Breastfeeding during the first year promotes satiety responsiveness in children aged 18-24 months.  Pediatr Obes. 2012;7(5):382-390.PubMedGoogle ScholarCrossref
23.
Cani  PD, Neyrinck  AM, Fava  F,  et al.  Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.  Diabetologia. 2007;50(11):2374-2383.PubMedGoogle ScholarCrossref
24.
Lin  HV, Frassetto  A, Kowalik  EJ  Jr,  et al.  Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.  PLoS One. 2012;7(4):e35240.PubMedGoogle ScholarCrossref
25.
Remely  M, Aumueller  E, Merold  C,  et al.  Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity.  Gene. 2014;537(1):85-92.PubMedGoogle ScholarCrossref
26.
Fiorucci  S, Mencarelli  A, Palladino  G, Cipriani  S.  Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders.  Trends Pharmacol Sci. 2009;30(11):570-580.PubMedGoogle ScholarCrossref
27.
Joyce  SA, MacSharry  J, Casey  PG,  et al.  Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.  Proc Natl Acad Sci U S A. 2014;111(20):7421-7426.PubMedGoogle ScholarCrossref
28.
Zivkovic  AM, German  JB, Lebrilla  CB, Mills  DA.  Human milk glycobiome and its impact on the infant gastrointestinal microbiota.  Proc Natl Acad Sci U S A. 2011;108(suppl 1):4653-4658.PubMedGoogle ScholarCrossref
29.
Ottman  NA. Host Immunostimulation and Substrate Utilization of the Gut Symbiont Akkermansia muciniphila [PhD thesis]. Wageningen, the Netherlands: Wageningen University; 2015.
30.
Everard  A, Belzer  C, Geurts  L,  et al.  Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.  Proc Natl Acad Sci U S A. 2013;110(22):9066-9071.PubMedGoogle ScholarCrossref
31.
Safavi  M, Farajian  S, Kelishadi  R, Mirlohi  M, Hashemipour  M.  The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial.  Int J Food Sci Nutr. 2013;64(6):687-693.PubMedGoogle ScholarCrossref
32.
Santacruz  A, Collado  MC, García-Valdés  L,  et al.  Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women.  Br J Nutr. 2010;104(1):83-92.PubMedGoogle ScholarCrossref
33.
Karlsson  CL, Onnerfält  J, Xu  J, Molin  G, Ahrné  S, Thorngren-Jerneck  K.  The microbiota of the gut in preschool children with normal and excessive body weight.  Obesity (Silver Spring). 2012;20(11):2257-2261.PubMedGoogle ScholarCrossref
34.
Jones  BV, Begley  M, Hill  C, Gahan  CG, Marchesi  JR.  Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.  Proc Natl Acad Sci U S A. 2008;105(36):13580-13585.PubMedGoogle ScholarCrossref
35.
Bergström  A, Skov  TH, Bahl  MI,  et al.  Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants.  Appl Environ Microbiol. 2014;80(9):2889-2900.PubMedGoogle ScholarCrossref
36.
Balamurugan  R, George  G, Kabeerdoss  J, Hepsiba  J, Chandragunasekaran  AM, Ramakrishna  BS.  Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children.  Br J Nutr. 2010;103(3):335-338.PubMedGoogle ScholarCrossref
37.
Murphy  EF, Cotter  PD, Healy  S,  et al.  Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models.  Gut. 2010;59(12):1635-1642.PubMedGoogle ScholarCrossref
Original Investigation
August 2016

Association of Early-Life Antibiotic Use and Protective Effects of Breastfeeding: Role of the Intestinal Microbiota

Author Affiliations
  • 1Immunobiology Research Programme, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
  • 2Research Department, Social Insurance Institution, Turku, Finland
  • 3Research and Development, Valio Ltd, Helsinki, Finland
  • 4Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
JAMA Pediatr. 2016;170(8):750-757. doi:10.1001/jamapediatrics.2016.0585
Abstract

Importance  Long duration of breastfeeding is known to reduce the frequency of infections and the risk of overweight, both of which are prevalent health problems among children, but the mechanisms are unclear.

Objectives  To test whether early-life antibiotic use in children prevents the beneficial long-term effects of breastfeeding on weight development and lifetime antibiotic use, and to investigate whether the duration of breastfeeding is associated with long-term microbiota development.

Design, Setting, and Participants  Retrospective cohort study, conducted from June 2015 to December 2015, of the association between the duration of breastfeeding and lifetime antibiotic use by children as well as body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) z score in a cohort of 226 healthy children aged 2 to 6 years attending day care at the study area in northern Finland and participating in a probiotic trial from October 1, 2009, through April 30, 2010. Fecal microbiota composition analysis was performed in a subcohort of 42 of these children.

Exposures  Duration of breastfeeding and the number of different antibiotic courses purchased for the child.

Main Outcomes and Measures  The BMI z score, lifetime antibiotic use after weaning, and fecal microbiota composition.

Results  A total of 226 children (mean [SD] age, 55 [1.4] months; 54% male) were included in the study. Among the 113 children with no antibiotics before weaning, each month of breastfeeding decreased the mean number of postweaning antibiotic courses by 5% (95% CI, 2% to 8%; P = .001) and mean BMI z scores by 0.08 unit (95% CI, 0.04 to 0.11; P < .001). Among the 113 early-life antibiotic users, the effect of breastfeeding on postweaning antibiotic use was borderline significant (estimated 4% decrease per month; 95% CI, 0% to 7%; P = .04) and the effect on BMI z score disappeared (estimated 1% increase; 95% CI, −3% to 5%; P = .50). In the subcohort of 42 children with fecal microbiota composition analysis, the children with short breastfeeding duration (0-6 months) and no early-life antibiotic use or with long breastfeeding duration (8-16 months) and early-life use of antibiotics had a significantly lower abundance of Bifidobacterium (by 55%; 95% CI, 43% to 87%; P = .006; and 39%, 95% CI, 30% to 68%; P < .001, respectively) and Akkermansia (by 71%; 95% CI, 28% to 87%; P = .008; and 69%; 95% CI, 22% to 90%; P = .02, respectively) compared with those with long duration of breastfeeding and no early-life antibiotics.

Conclusions and Relevance  Antibiotic use in a child during breastfeeding may weaken the beneficial effects of long breastfeeding duration. The results suggest that particularly the long-term metabolic benefits of breastfeeding are conveyed by the intestinal microbiota.

×