Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians | Congenital Defects | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Petersen  LR, Jamieson  DJ, Powers  AM, Honein  MA.  Zika virus.  N Engl J Med. 2016;374(16):1552-1563.PubMedGoogle ScholarCrossref
Zanluca  C, Melo  VC, Mosimann  AL, Santos  GI, Santos  CN, Luz  K.  First report of autochthonous transmission of Zika virus in Brazil.  Mem Inst Oswaldo Cruz. 2015;110(4):569-572.PubMedGoogle ScholarCrossref
Kleber de Oliveira  W, Cortez-Escalante  J, De Oliveira  WT,  et al.  Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy: Brazil, 2015.  MMWR Morb Mortal Wkly Rep. 2016;65(9):242-247.PubMedGoogle ScholarCrossref
Pan American Health Organization; World Health Organization. Epidemiological alert: neurological syndrome, congenital malformations, and Zika virus infection: implications for public health in the Americas. Published December 1, 2015. Accessed July 7, 2016.
Rasmussen  SA, Jamieson  DJ, Honein  MA, Petersen  LR.  Zika virus and birth defects: reviewing the evidence for causality.  N Engl J Med. 2016;374(20):1981-1987.PubMedGoogle ScholarCrossref
World Health Organization. Zika situation report: Zika virus, microcephaly and Guillain-Barré syndrome. Published April 7, 2016. Accessed September 30, 2016.
de Araújo  TV, Rodrigues  LC, de Alencar Ximenes  RA,  et al; investigators from the Microcephaly Epidemic Research Group; Brazilian Ministry of Health; Pan American Health Organization; Instituto de Medicina Integral Professor Fernando Figueira; State Health Department of Pernambuco.  Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study [published online September 15, 2016].  Lancet Infect Dis. doi:10.1016/S1473-3099(16)30318-8PubMedGoogle Scholar
Miranda-Filho  DdeB, Martelli  CM, Ximenes  RA,  et al.  Initial description of the presumed congenital Zika syndrome.  Am J Public Health. 2016;106(4):598-600.PubMedGoogle ScholarCrossref
Chan  JF, Choi  GK, Yip  CC, Cheng  VC, Yuen  KY.  Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease.  J Infect. 2016;72(5):507-524.PubMedGoogle ScholarCrossref
França  GV, Schuler-Faccini  L, Oliveira  WK,  et al.  Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation.  Lancet. 2016;388(10047):891-897.PubMedGoogle ScholarCrossref
Centers for Disease Control and Prevention. Areas with Zika. Accessed September 30, 2016.
Centers for Disease Control and Prevention. Potential range in US. Accessed September 30, 2016.
Culjat  M, Darling  SE, Nerurkar  VR,  et al.  Clinical and imaging findings in an infant with Zika embryopathy.  Clin Infect Dis. 2016;63(6):805-811.PubMedGoogle ScholarCrossref
Dain Gandelman Horovitz  D, da Silva Pone  MV, Moura Pone  S, Dias Saad Salles  TR, Bastos Boechat  MC.  Cranial bone collapse in microcephalic infants prenatally exposed to Zika virus infection.  Neurology. 2016;87(1):118-119.PubMedGoogle ScholarCrossref
Driggers  RW, Ho  CY, Korhonen  EM,  et al.  Zika virus infection with prolonged maternal viremia and fetal brain abnormalities.  N Engl J Med. 2016;374(22):2142-2151.PubMedGoogle ScholarCrossref
Leal  MC, Muniz  LF, Caldas Neto  SD, van der Linden  V, Ramos  RC.  Sensorineural hearing loss in a case of congenital Zika virus [published online June 30, 2016].  Braz J Otorhinolaryngol. doi:10.1016/j.bjorl.2016.06.001PubMedGoogle Scholar
Mlakar  J, Korva  M, Tul  N,  et al.  Zika virus associated with microcephaly.  N Engl J Med. 2016;374(10):951-958.PubMedGoogle ScholarCrossref
Moron  AF, Cavalheiro  S, Milani  H,  et al.  Microcephaly associated with maternal Zika virus infection.  BJOG. 2016;123(8):1265-1269.PubMedGoogle ScholarCrossref
Oliveira  DB, Almeida  FJ, Durigon  EL,  et al.  Prolonged shedding of Zika virus associated with congenital infection.  N Engl J Med. 2016;375(12):1202-1204.PubMedGoogle ScholarCrossref
Perez  S, Tato  R, Cabrera  JJ,  et al.  Confirmed case of Zika virus congenital infection, Spain, March 2016.  Euro Surveill. 2016;21(24).PubMedGoogle Scholar
Ventura  CV, Maia  M, Bravo-Filho  V, Góis  AL, Belfort  R  Jr.  Zika virus in Brazil and macular atrophy in a child with microcephaly.  Lancet. 2016;387(10015):228.PubMedGoogle ScholarCrossref
Werner  H, Fazecas  T, Guedes  B,  et al.  Intrauterine Zika virus infection and microcephaly: correlation of perinatal imaging and three-dimensional virtual physical models.  Ultrasound Obstet Gynecol. 2016;47(5):657-660.PubMedGoogle ScholarCrossref
Werner  H, Sodré  D, Hygino  C,  et al.  First-trimester intrauterine Zika virus infection and brain pathology: prenatal and postnatal neuroimaging findings.  Prenat Diagn. 2016;36(8):785-789.PubMedGoogle ScholarCrossref
Besnard  M, Eyrolle-Guignot  D, Guillemette-Artur  P,  et al.  Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia.  Euro Surveill. 2016;21(13).PubMedGoogle Scholar
Calvet  G, Aguiar  RS, Melo  AS,  et al.  Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study.  Lancet Infect Dis. 2016;16(6):653-660.PubMedGoogle ScholarCrossref
Cavalheiro  S, Lopez  A, Serra  S,  et al.  Microcephaly and Zika virus: neonatal neuroradiological aspects.  Childs Nerv Syst. 2016;32(6):1057-1060.PubMedGoogle ScholarCrossref
de Fatima Vasco Aragao  M, van der Linden  V, Brainer-Lima  AM,  et al.  Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study.  BMJ. 2016;353:i1901.PubMedGoogle ScholarCrossref
de Paula Freitas  B, de Oliveira Dias  JR, Prazeres  J,  et al.  Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil [published online February 9, 2016].  JAMA Ophthalmol. doi:10.1001/jamaophthalmol.2016.0267PubMedGoogle Scholar
Guillemette-Artur  P, Besnard  M, Eyrolle-Guignot  D, Jouannic  JM, Garel  C.  Prenatal brain MRI of fetuses with Zika virus infection.  Pediatr Radiol. 2016;46(7):1032-1039.PubMedGoogle ScholarCrossref
Hazin  AN, Poretti  A, Turchi Martelli  CM,  et al; Microcephaly Epidemic Research Group.  Computed tomographic findings in microcephaly associated with Zika virus.  N Engl J Med. 2016;374(22):2193-2195.PubMedGoogle ScholarCrossref
Leal  MC, Muniz  LF, Ferreira  TS,  et al.  Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection: Brazil, November 2015-May 2016.  MMWR Morb Mortal Wkly Rep. 2016;65(34):917-919.PubMedGoogle ScholarCrossref
Martines  RB, Bhatnagar  J, de Oliveira Ramos  AM,  et al.  Pathology of congenital Zika syndrome in Brazil: a case series.  Lancet. 2016;388(10047):898-904.PubMedGoogle ScholarCrossref
Microcephaly Epidemic Research Group.  Microcephaly in infants, Pernambuco State, Brazil, 2015.  Emerg Infect Dis. 2016;22(6):1090-1093.PubMedGoogle ScholarCrossref
Miranda  HA  II, Costa  MC, Frazão  MA, Simão  N, Franchischini  S, Moshfeghi  DM.  Expanded spectrum of congenital ocular findings in microcephaly with presumed Zika infection.  Ophthalmology. 2016;123(8):1788-1794.PubMedGoogle ScholarCrossref
Oliveira Melo  AS, Malinger  G, Ximenes  R, Szejnfeld  PO, Alves Sampaio  S, Bispo de Filippis  AM.  Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?  Ultrasound Obstet Gynecol. 2016;47(1):6-7.PubMedGoogle ScholarCrossref
Sarno  M, Aquino  M, Pimentel  K,  et al.  Progressive lesions of central nervous system in microcephalic fetuses with suspected congenital Zika virus syndrome [published online September 19, 2016].  Ultrasound Obstet Gynecol. doi:10.1002/uog.17303PubMedGoogle Scholar
Schuler-Faccini  L, Ribeiro  EM, Feitosa  IM,  et al; Brazilian Medical Genetics Society–Zika Embryopathy Task Force.  Possible association between Zika virus infection and microcephaly: Brazil, 2015.  MMWR Morb Mortal Wkly Rep. 2016;65(3):59-62.PubMedGoogle ScholarCrossref
Silva  AAM, Ganz  JSS, Sousa  PS,  et al.  Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome.  Emerg Infect Disease. doi:10.3201/eid2211.160956Google Scholar
Soares de Oliveira-Szejnfeld  P, Levine  D, Melo  AS,  et al.  Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally.  Radiology. 2016;281(1):203-218.PubMedGoogle ScholarCrossref
Soares de Souza  A, Moraes Dias  C, Braga  FD,  et al.  Fetal infection by Zika virus in the third trimester: report of 2 cases [published online September 6, 2016].  Clin Infect Dis.PubMedGoogle Scholar
van der Linden  V, Filho  EL, Lins  OG,  et al.  Congenital Zika syndrome with arthrogryposis: retrospective case series study.  BMJ. 2016;354:i3899.PubMedGoogle ScholarCrossref
Ventura  CV, Maia  M, Travassos  SB,  et al.  Risk factors associated with the ophthalmoscopic findings identified in infants with presumed Zika virus congenital infection.  JAMA Ophthalmol. 2016;134(8):912-918.PubMedGoogle ScholarCrossref
Ventura  CV, Maia  M, Ventura  BV,  et al.  Ophthalmological findings in infants with microcephaly and presumable intra-uterus Zika virus infection.  Arq Bras Oftalmol. 2016;79(1):1-3.PubMedGoogle ScholarCrossref
Brasil  P, Pereira  JP  Jr, Raja Gabaglia  C,  et al.  Zika virus infection in pregnant women in Rio de Janeiro: preliminary report [published online March 4, 2016].  N Engl J Med.PubMedGoogle Scholar
Russell  LJ, Weaver  DD, Bull  MJ, Weinbaum  M.  In utero brain destruction resulting in collapse of the fetal skull, microcephaly, scalp rugae, and neurologic impairment: the fetal brain disruption sequence.  Am J Med Genet. 1984;17(2):509-521.PubMedGoogle ScholarCrossref
Corona-Rivera  JR, Corona-Rivera  E, Romero-Velarde  E, Hernández-Rocha  J, Bobadilla-Morales  L, Corona-Rivera  A.  Report and review of the fetal brain disruption sequence.  Eur J Pediatr. 2001;160(11):664-667.PubMedGoogle ScholarCrossref
Parmar  H, Ibrahim  M.  Pediatric intracranial infections.  Neuroimaging Clin N Am. 2012;22(4):707-725.PubMedGoogle ScholarCrossref
Averill  LW, Kandula  VV, Akyol  Y, Epelman  M.  Fetal brain magnetic resonance imaging findings in congenital cytomegalovirus infection with postnatal imaging correlation.  Semin Ultrasound CT MR. 2015;36(6):476-486.PubMedGoogle ScholarCrossref
Fujita  H, Yamamoto  M, Ogino  T,  et al.  Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro.  Cell Biochem Funct. 2014;32(1):77-86.PubMedGoogle ScholarCrossref
Garcez  PP, Loiola  EC, Madeiro da Costa  R,  et al.  Zika virus impairs growth in human neurospheres and brain organoids.  Science. 2016;352(6287):816-818.PubMedGoogle ScholarCrossref
Tang  H, Hammack  C, Ogden  SC,  et al.  Zika virus infects human cortical neural progenitors and attenuates their growth.  Cell Stem Cell. 2016;18(5):587-590.PubMedGoogle ScholarCrossref
Qian  X, Nguyen  HN, Song  MM,  et al.  Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure.  Cell. 2016;165(5):1238-1254.PubMedGoogle ScholarCrossref
Nowakowski  TJ, Pollen  AA, Di Lullo  E, Sandoval-Espinosa  C, Bershteyn  M, Kriegstein  AR.  Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells.  Cell Stem Cell. 2016;18(5):591-596.PubMedGoogle ScholarCrossref
Valentine  G, Marquez  L, Pammi  M.  Zika virus-associated microcephaly and eye lesions in the newborn.  J Pediatric Infect Dis Soc. 2016;5(3):323-328.PubMedGoogle ScholarCrossref
Mets  MB, Chhabra  MS.  Eye manifestations of intrauterine infections and their impact on childhood blindness.  Surv Ophthalmol. 2008;53(2):95-111.PubMedGoogle ScholarCrossref
Kowalczyk  B, Feluś  J.  Arthrogryposis: an update on clinical aspects, etiology, and treatment strategies.  Arch Med Sci. 2016;12(1):10-24.PubMedGoogle ScholarCrossref
Bamshad  M, Van Heest  AE, Pleasure  D.  Arthrogryposis: a review and update.  J Bone Joint Surg Am. 2009;91(suppl 4):40-46.PubMedGoogle ScholarCrossref
Hall  JG, Reed  SD.  Teratogens associated with congenital contractures in humans and in animals.  Teratology. 1982;25(2):173-191.PubMedGoogle ScholarCrossref
Konstantinidou  A, Anninos  H, Spanakis  N,  et al.  Transplacental infection of Coxsackievirus B3 pathological findings in the fetus.  J Med Virol. 2007;79(6):754-757.PubMedGoogle ScholarCrossref
Russell  K, Oliver  SE, Lewis  L,  et al; Contributors.  Update: Interim guidance for the evaluation and management of infants with possible congenital Zika virus infection: United States, August 2016.  MMWR Morb Mortal Wkly Rep. 2016;65(33):870-878.PubMedGoogle ScholarCrossref
Degani  S.  Sonographic findings in fetal viral infections: a systematic review.  Obstet Gynecol Surv. 2006;61(5):329-336.PubMedGoogle ScholarCrossref
La Piana  R, Uggetti  C, Roncarolo  F,  et al.  Neuroradiologic patterns and novel imaging findings in Aicardi-Goutières syndrome.  Neurology. 2016;86(1):28-35.PubMedGoogle ScholarCrossref
Briggs  TA, Wolf  NI, D’Arrigo  S,  et al.  Band-like intracranial calcification with simplified gyration and polymicrogyria: a distinct “pseudo-TORCH” phenotype.  Am J Med Genet A. 2008;146A(24):3173-3180.PubMedGoogle ScholarCrossref
O’Driscoll  MC, Daly  SB, Urquhart  JE,  et al.  Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria.  Am J Hum Genet. 2010;87(3):354-364.PubMedGoogle ScholarCrossref
Mochida  GH, Ganesh  VS, Felie  JM,  et al.  A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts.  Am J Hum Genet. 2010;87(6):882-889.PubMedGoogle ScholarCrossref
Paciorkowski  AR, Keppler-Noreuil  K, Robinson  L,  et al.  Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption.  Am J Med Genet A. 2013;161A(7):1523-1530.PubMedGoogle ScholarCrossref
Yamamoto  S, Jaiswal  M, Charng  WL,  et al.  A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.  Cell. 2014;159(1):200-214.PubMedGoogle ScholarCrossref
Abdel-Salam  GM, Abdel-Hamid  MS, El-Khayat  HA,  et al.  Fetal brain disruption sequence versus fetal brain arrest: a distinct autosomal recessive developmental brain malformation phenotype.  Am J Med Genet A. 2015;167A(5):1089-1099.PubMedGoogle ScholarCrossref
Alexander  IE, Tauro  GP, Bankier  A.  Fetal brain disruption sequence in sisters.  Eur J Pediatr. 1995;154(8):654-657.PubMedGoogle ScholarCrossref
Schram  A, Kroes  HY, Sollie  K, Timmer  B, Barth  P, van Essen  T.  Hereditary fetal brain degeneration resembling fetal brain disruption sequence in two sibships.  Am J Med Genet A. 2004;127A(2):172-182.PubMedGoogle ScholarCrossref
Pacheco  O, Beltrán  M, Nelson  CA,  et al.  Zika virus disease in Colombia: preliminary report [published online June 15, 2016].  N Engl J Med.PubMedGoogle Scholar
Bilavsky  E, Schwarz  M, Pardo  J,  et al.  Lenticulostriated vasculopathy is a high-risk marker for hearing loss in congenital cytomegalovirus infections.  Acta Paediatr. 2015;104(9):e388-e394.PubMedGoogle ScholarCrossref
Costello  A, Dua  T, Duran  P,  et al; World Health Organization. Defining the syndrome associated with congenital Zika virus infection. Accessed September 30, 2016.
Gérardin  P, Randrianaivo  H, Schaub  B, Césaire  R, Doray  B, LaBeaud  AD.  Congenital Zika syndrome: time to move from case series to case-control studies and data sharing.  BMJ. 2016;354:i4850.PubMedGoogle ScholarCrossref
Ventura  CV, Maia  M, Dias  N, Ventura  LO, Belfort  R  Jr.  Zika: neurological and ocular findings in infant without microcephaly.  Lancet. 2016;387(10037):2502.PubMedGoogle ScholarCrossref
March 2017

Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians

Author Affiliations
  • 1National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
  • 2National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Ft Collins, Colorado
  • 3University of Washington and Seattle Children’s Research Institute, Seattle
  • 4Hospital Infantil Albert Sabin, Fortaleza, Ceará, Brazil
  • 5Altino Ventura Foundation, Recife, Pernambuco, Brazil
  • 6HOPE Eye Hospital, Recife, Pernambuco, Brazil
  • 7Federal University of São Paulo, São Paulo, Brazil
  • 8NOVA Diagnóstico Por Imagem, João Pessoa, Paraíba, Brazil
  • 9Federal University of Paraiba, João Pessoa, Paraíba, Brazil
  • 10Estacio Faculdade de Medicina de Juazeiro do Norte, Juazeiro do Norte, Ceará, Brazil
  • 11Carter Consulting, Atlanta, Georgia
  • 12Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia
JAMA Pediatr. 2017;171(3):288-295. doi:10.1001/jamapediatrics.2016.3982

Importance  Zika virus infection can be prenatally passed from a pregnant woman to her fetus. There is sufficient evidence to conclude that intrauterine Zika virus infection is a cause of microcephaly and serious brain anomalies, but the full spectrum of anomalies has not been delineated. To inform pediatric clinicians who may be called on to evaluate and treat affected infants and children, we review the most recent evidence to better characterize congenital Zika syndrome.

Observations  We reviewed published reports of congenital anomalies occurring in fetuses or infants with presumed or laboratory-confirmed intrauterine Zika virus infection. We conducted a comprehensive search of the English literature using Medline and EMBASE for Zika from inception through September 30, 2016. Congenital anomalies were considered in the context of the presumed pathogenetic mechanism related to the neurotropic properties of the virus. We conclude that congenital Zika syndrome is a recognizable pattern of structural anomalies and functional disabilities secondary to central and, perhaps, peripheral nervous system damage. Although many of the components of this syndrome, such as cognitive, sensory, and motor disabilities, are shared by other congenital infections, there are 5 features that are rarely seen with other congenital infections or are unique to congenital Zika virus infection: (1) severe microcephaly with partially collapsed skull; (2) thin cerebral cortices with subcortical calcifications; (3) macular scarring and focal pigmentary retinal mottling; (4) congenital contractures; and (5) marked early hypertonia and symptoms of extrapyramidal involvement.

Conclusions and Relevance  Although the full spectrum of adverse reproductive outcomes caused by Zika virus infection is not yet determined, a distinctive phenotype—the congenital Zika syndrome—has emerged. Recognition of this phenotype by clinicians for infants and children can help ensure appropriate etiologic evaluation and comprehensive clinical investigation to define the range of anomalies in an affected infant as well as determine essential follow-up and ongoing care.