Duration of Immunity and Effectiveness of Diphtheria-Tetanus–Acellular Pertussis Vaccines in Children | Infectious Diseases | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Edwards  KM, Decker  MD. Pertussis vaccines. In: Plotkin  SA, Orenstein  WA, Offit  PA, eds.  Vaccines. 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:447-492. doi:10.1016/B978-1-4557-0090-5.00030-6
2.
Rohani  P, Scarpino  SV.  Pertussis: Epidemiology, Immunology and Evolution. Oxford, UK: Oxford University Press; 2019.
3.
Shapiro-Shapin  CG.  Pearl Kendrick, Grace Eldering, and the pertussis vaccine.  Emerg Infect Dis. 2010;16(8):1273-1278. doi:10.3201/eid1608.100288PubMedGoogle ScholarCrossref
4.
Yeung  KHT, Duclos  P, Nelson  EAS, Hutubessy  RCW.  An update of the global burden of pertussis in children younger than 5 years: a modelling study.  Lancet Infect Dis. 2017;17(9):974-980. doi:10.1016/S1473-3099(17)30390-0PubMedGoogle ScholarCrossref
5.
Choi  YH, Campbell  H, Amirthalingam  G, van Hoek  AJ, Miller  E.  Investigating the pertussis resurgence in England and Wales, and options for future control.  BMC Med. 2016;14(1):121. doi:10.1186/s12916-016-0665-8PubMedGoogle ScholarCrossref
6.
Sheridan  SL, Ware  RS, Grimwood  K, Lambert  SB.  Number and order of whole cell pertussis vaccines in infancy and disease protection.  JAMA. 2012;308(5):454-456. doi:10.1001/jama.2012.6364PubMedGoogle ScholarCrossref
7.
Rohani  P, Drake  JM.  The decline and resurgence of pertussis in the US.  Epidemics. 2011;3(3-4):183-188. doi:10.1016/j.epidem.2011.10.001PubMedGoogle ScholarCrossref
8.
Tanaka  M, Vitek  CR, Pascual  FB, Bisgard  KM, Tate  JE, Murphy  TV.  Trends in pertussis among infants in the United States, 1980-1999.  JAMA. 2003;290(22):2968-2975. doi:10.1001/jama.290.22.2968PubMedGoogle ScholarCrossref
9.
Farizo  KM, Cochi  SL, Zell  ER, Brink  EW, Wassilak  SG, Patriarca  PA.  Epidemiological features of pertussis in the United States, 1980-1989.  Clin Infect Dis. 1992;14(3):708-719. doi:10.1093/clinids/14.3.708PubMedGoogle ScholarCrossref
10.
Güriş  D, Strebel  PM, Bardenheier  B,  et al.  Changing epidemiology of pertussis in the United States: increasing reported incidence among adolescents and adults, 1990-1996.  Clin Infect Dis. 1999;28(6):1230-1237. doi:10.1086/514776PubMedGoogle ScholarCrossref
11.
Centers for Disease Control and Prevention. Notifiable infectious diseases and conditions data tables. https://www.cdc.gov/nndss/infectious-tables.html. Accessed March 19, 2019.
12.
Skoff  TH, Blain  AE, Watt  J,  et al.  Impact of the US maternal tetanus, diphtheria, and acellular pertussis vaccination program on preventing pertussis in infants <2 months of age: a case-control evaluation.  Clin Infect Dis. 2017;65(12):1977-1983. doi:10.1093/cid/cix724PubMedGoogle ScholarCrossref
13.
Blain  AE, Lewis  M, Banerjee  E,  et al.  An assessment of the cocooning strategy for preventing infant pertussis—United States, 2011.  Clin Infect Dis. 2016;63(suppl 4):S221-S226. doi:10.1093/cid/ciw528PubMedGoogle ScholarCrossref
14.
Castagnini  LA, Healy  CM, Rench  MA, Wootton  SH, Munoz  FM, Baker  CJ.  Impact of maternal postpartum tetanus and diphtheria toxoids and acellular pertussis immunization on infant pertussis infection.  Clin Infect Dis. 2012;54(1):78-84. doi:10.1093/cid/cir765PubMedGoogle ScholarCrossref
15.
Domenech de Cellès  M, Magpantay  FMG, King  AA, Rohani  P.  The pertussis enigma: reconciling epidemiology, immunology and evolution.  Proc Biol Sci. 2016;283(1822):20152309. doi:10.1098/rspb.2015.2309PubMedGoogle ScholarCrossref
16.
Jackson  DW, Rohani  P.  Perplexities of pertussis: recent global epidemiological trends and their potential causes.  Epidemiol Infect. 2014;142(4):672-684. doi:10.1017/S0950268812003093PubMedGoogle ScholarCrossref
17.
Fine  PE, Clarkson  JA.  Reflections on the efficacy of pertussis vaccines.  Rev Infect Dis. 1987;9(5):866-883. doi:10.1093/clinids/9.5.866PubMedGoogle ScholarCrossref
18.
Bolotin  S, Harvill  ET, Crowcroft  NS.  What to do about pertussis vaccines? linking what we know about pertussis vaccine effectiveness, immunology and disease transmission to create a better vaccine.  Pathog Dis. 2015;73(8):ftv057. doi:10.1093/femspd/ftv057PubMedGoogle ScholarCrossref
19.
Klein  NP, Zerbo  O.  Use of acellular pertussis vaccines in the United States: can we do better?  Expert Rev Vaccines. 2017;16(12):1175-1179. doi:10.1080/14760584.2017.1393334PubMedGoogle ScholarCrossref
20.
von König  CHW.  Acellular pertussis vaccines: where to go to?  Lancet Infect Dis. 2018;18(1):5-6. doi:10.1016/S1473-3099(17)30613-8PubMedGoogle ScholarCrossref
21.
Zhang  L, Prietsch  SOM, Axelsson  I, Halperin  SA.  Acellular vaccines for preventing whooping cough in children.  Cochrane Database Syst Rev. 2012;3(3):CD001478.PubMedGoogle Scholar
22.
 Pertussis vaccination: acellular pertussis vaccine for reinforcing and booster use—supplementary ACIP statement: recommendations of the Immunization Practices Advisory Committee (ACIP).  MMWR Recomm Rep. 1992;41(RR-1):1-10.PubMedGoogle Scholar
23.
 Pertussis vaccination: use of acellular pertussis vaccines among infants and young children: recommendations of the Advisory Committee on Immunization Practices (ACIP).  MMWR Recomm Rep. 1997;46(RR-7):1-25.PubMedGoogle Scholar
24.
Klein  NP, Bartlett  J, Rowhani-Rahbar  A, Fireman  B, Baxter  R.  Waning protection after fifth dose of acellular pertussis vaccine in children.  N Engl J Med. 2012;367(11):1012-1019. doi:10.1056/NEJMoa1200850PubMedGoogle ScholarCrossref
25.
Misegades  LK, Winter  K, Harriman  K,  et al.  Association of childhood pertussis with receipt of 5 doses of pertussis vaccine by time since last vaccine dose, California, 2010.  JAMA. 2012;308(20):2126-2132. doi:10.1001/jama.2012.14939PubMedGoogle ScholarCrossref
26.
Tartof  SY, Lewis  M, Kenyon  C,  et al.  Waning immunity to pertussis following 5 doses of DTaP.  Pediatrics. 2013;131(4):e1047-e1052. doi:10.1542/peds.2012-1928PubMedGoogle ScholarCrossref
27.
McGirr  A, Fisman  DN.  Duration of pertussis immunity after DTaP immunization: a meta-analysis.  Pediatrics. 2015;135(2):331-343. doi:10.1542/peds.2014-1729PubMedGoogle ScholarCrossref
28.
Klein  NP, Bartlett  J, Fireman  B,  et al.  Waning protection following 5 doses of a 3-component diphtheria, tetanus, and acellular pertussis vaccine.  Vaccine. 2017;35(26):3395-3400. doi:10.1016/j.vaccine.2017.05.008PubMedGoogle ScholarCrossref
29.
Burns  DL, Meade  BD, Messionnier  NE.  Pertussis resurgence: perspectives from the working group meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge.  J Infect Dis. 2014;209(suppl 1):S32-S35. doi:10.1093/infdis/jit491PubMedGoogle ScholarCrossref
30.
Clark  TA, Messonnier  NE, Hadler  SC.  Pertussis control: time for something new?  Trends Microbiol. 2012;20(5):211-213. doi:10.1016/j.tim.2012.03.003PubMedGoogle ScholarCrossref
31.
Mills  KH, Ross  PJ, Allen  AC, Wilk  MM.  Do we need a new vaccine to control the re-emergence of pertussis?  Trends Microbiol. 2014;22(2):49-52. doi:10.1016/j.tim.2013.11.007PubMedGoogle ScholarCrossref
32.
Chit  A, Zivaripiran  H, Shin  T,  et al.  Acellular pertussis vaccines effectiveness over time: a systematic review, meta-analysis and modeling study.  PLoS One. 2018;13(6):e0197970. doi:10.1371/journal.pone.0197970PubMedGoogle ScholarCrossref
33.
Domenech de Cellès  M, Magpantay  FMG, King  AA, Rohani  P.  The impact of past vaccination coverage and immunity on pertussis resurgence.  Sci Transl Med. 2018;10(434):eaaj1748. doi:10.1126/scitranslmed.aaj1748PubMedGoogle ScholarCrossref
34.
McLean  AR, Anderson  RM.  Measles in developing countries, part II: the predicted impact of mass vaccination.  Epidemiol Infect. 1988;100(3):419-442. doi:10.1017/S0950268800067170PubMedGoogle ScholarCrossref
35.
Broder  KR, Cortese  MM, Iskander  JK,  et al; Advisory Committee on Immunization Practices (ACIP).  Preventing tetanus, diphtheria, and pertussis among adolescents: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccines recommendations of the Advisory Committee on Immunization Practices (ACIP).  MMWR Recomm Rep. 2006;55(RR-3):1-34.PubMedGoogle Scholar
36.
Gambhir  M, Clark  TA, Cauchemez  S, Tartof  SY, Swerdlow  DL, Ferguson  NM.  A change in vaccine efficacy and duration of protection explains recent rises in pertussis incidence in the United States.  PLoS Comput Biol. 2015;11(4):e1004138. doi:10.1371/journal.pcbi.1004138PubMedGoogle ScholarCrossref
37.
Rohani  P, Zhong  X, King  AA.  Contact network structure explains the changing epidemiology of pertussis.  Science. 2010;330(6006):982-985. doi:10.1126/science.1194134PubMedGoogle ScholarCrossref
38.
Keeling  MJ, Rohani  P.  Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press; 2008.
39.
Halloran  ME, Longini  IM, Struchiner  CJ.  Design and Analysis of Vaccine Studies. New York, NY: Springer; 2010. doi:10.1007/978-0-387-68636-3
40.
Magpantay  FMG, Riolo  MA, DE Cellès  MD, King  AA, Rohani  P.  Epidemiological consequences of imperfect vaccines for immunizing infections.  SIAM J Appl Math. 2014;74(6):1810-1830. doi:10.1137/140956695PubMedGoogle ScholarCrossref
41.
Domenech de Cellès  M, Riolo  MA, Magpantay  FMG, Rohani  P, King  AA.  Epidemiological evidence for herd immunity induced by acellular pertussis vaccines.  Proc Natl Acad Sci U S A. 2014;111(7):E716-E717. doi:10.1073/pnas.1323795111PubMedGoogle ScholarCrossref
42.
Fine  PE, Clarkson  JA.  The recurrence of whooping cough: possible implications for assessment of vaccine efficacy.  Lancet. 1982;1(8273):666-669. doi:10.1016/S0140-6736(82)92214-0PubMedGoogle ScholarCrossref
43.
Rohani  P, Earn  DJ, Grenfell  BT.  Impact of immunisation on pertussis transmission in England and Wales.  Lancet. 2000;355(9200):285-286. doi:10.1016/S0140-6736(99)04482-7PubMedGoogle ScholarCrossref
44.
Warfel  JM, Zimmerman  LI, Merkel  TJ.  Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model.  Proc Natl Acad Sci U S A. 2014;111(2):787-792. doi:10.1073/pnas.1314688110PubMedGoogle ScholarCrossref
45.
Ryan  M, Murphy  G, Ryan  E,  et al.  Distinct T-cell subtypes induced with whole cell and acellular pertussis vaccines in children.  Immunology. 1998;93(1):1-10. doi:10.1046/j.1365-2567.1998.00401.xPubMedGoogle ScholarCrossref
46.
Smallridge  WE, Rolin  OY, Jacobs  NT, Harvill  ET.  Different effects of whole-cell and acellular vaccines on Bordetella transmission.  J Infect Dis. 2014;209(12):1981-1988. doi:10.1093/infdis/jiu030PubMedGoogle ScholarCrossref
47.
Klein  NP, Bartlett  J, Fireman  B, Baxter  R.  Waning Tdap effectiveness in adolescents.  Pediatrics. 2016;137(3):e20153326. doi:10.1542/peds.2015-3326PubMedGoogle ScholarCrossref
Original Investigation
April 22, 2019

Duration of Immunity and Effectiveness of Diphtheria-Tetanus–Acellular Pertussis Vaccines in Children

Author Affiliations
  • 1Biostatistics, Biomathematics, Pharmacoepidemiology, and Infectious Diseases Unit, Institut Pasteur, Inserm U1181, University of Versailles St-Quentin-en-Yvelines, Versailles, France
  • 2Odum School of Ecology, University of Georgia, Athens
  • 3Department of Infectious Diseases, University of Georgia, Athens
  • 4Center for the Ecology of Infectious Diseases, University of Georgia, Athens
  • 5Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor
  • 6Department of Mathematics, University of Michigan, Ann Arbor
  • 7Center for the Study of Complex Systems, University of Michigan, Ann Arbor
JAMA Pediatr. 2019;173(6):588-594. doi:10.1001/jamapediatrics.2019.0711
Key Points

Question  How are trends in the odds of acquiring pertussis related to the effectiveness and durability of vaccine protection?

Findings  This simulation study used a previously validated mathematical model of pertussis transmission to systematically explore a range of hypotheses about the degree of waning immunity conferred by the diphtheria-tetanus–acellular pertussis vaccine. Based on metrics documented in epidemiologic studies in the United States, it was estimated that vaccine effectiveness exceeded 75% in children aged 5 to 9 years.

Meaning  These results suggest that the diphtheria-tetanus–acellular pertussis vaccine confers imperfect, but long-lived, protection.

Abstract

Importance  The United States has experienced a nationwide resurgence of pertussis since the mid-1970s, despite high estimated vaccine coverage. Short-lived immunity induced by diphtheria-tetanus–acellular pertussis (DTaP) vaccines in young children is widely believed to be responsible for this growing burden, but the duration of protection conferred by DTaP vaccines remains incompletely quantified.

Objective  To assess the duration of immunity and the effectiveness of DTaP vaccines in US children.

Design, Setting, and Participants  A mathematical, age-structured model of pertussis transmission, previously validated empirically on incidence data in Massachusetts, was used in this simulation study to assess the duration of DTaP immunity most consistent with the empirical values of the relative increase in the odds of acquiring pertussis from recent epidemiologic studies in the United States. The study included 5 simulated cohorts of children born between January 1, 2001, and December 31, 2005, followed up between the ages of 5 and 9 years (study period, January 1, 2006, to December 31, 2014). Statistical analysis was performed from May 1 to December 1, 2017.

Interventions  Vaccination with DTaP according to the US immunization schedule, with a range of assumptions regarding the degree of waning immunity.

Main Outcomes and Measures  Vaccine effectiveness and relative change in the odds of acquiring pertussis (odds ratio) in children aged 5 to 9 years, duration of DTaP immunity, and vaccine population-level impact.

Results  This study found a marked association between the degree of waning immunity, vaccine effectiveness, and the odds ratio. Counterintuitively, the odds ratio was positively associated with vaccine effectiveness, as a consequence of nonlinear, age-assortative transmission dynamics. Based on the empirical odds ratios (1.33; 95% CI, 1.23-1.43), it was estimated that vaccine effectiveness exceeded 75% in children aged 5 to 9 years and that more than 65% of children remained immune to pertussis 5 years after the last DTaP dose.

Conclusions and Relevance  The results of this study suggest that temporal trends in the odds of acquiring pertussis are an unreliable measure of the durability of vaccine-induced protection. They further demonstrate that DTaP vaccines confer imperfect, but long-lived protection. Control strategies should be based on the best available estimates of vaccine properties and the age structure of the transmission network.

×