Prevalence of Prediabetes Among Adolescents and Young Adults in the United States, 2005-2016 | Adolescent Medicine | JAMA Pediatrics | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
American Diabetes Association.  5: Prevention or delay of type 2 diabetes: Standards of Medical Care in Diabetes-2018.  Diabetes Care. 2018;41(suppl 1):S51-S54. doi:10.2337/dc18-S005PubMedGoogle ScholarCrossref
Morris  DH, Khunti  K, Achana  F,  et al.  Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis.  Diabetologia. 2013;56(7):1489-1493. doi:10.1007/s00125-013-2902-4PubMedGoogle ScholarCrossref
Huang  Y, Cai  X, Mai  W, Li  M, Hu  Y.  Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis.  BMJ. 2016;355:i5953. doi:10.1136/bmj.i5953PubMedGoogle ScholarCrossref
Menke  A, Casagrande  S, Geiss  L, Cowie  CC.  Prevalence of and trends in diabetes among adults in the United States, 1988-2012.  JAMA. 2015;314(10):1021-1029. doi:10.1001/jama.2015.10029PubMedGoogle ScholarCrossref
Casagrande  SS, Menke  A, Linder  B, Osganian  SK, Cowie  CC.  Cardiovascular risk factors in adolescents with prediabetes.  Diabet Med. 2018;35:1202-1209. doi:10.1111/dme.13661PubMedGoogle ScholarCrossref
Vijayakumar  P, Hoyer  A, Nelson  RG, Brinks  R, Pavkov  ME.  Estimation of chronic kidney disease incidence from prevalence and mortality data in American Indians with type 2 diabetes.  PLoS One. 2017;12(2):e0171027. doi:10.1371/journal.pone.0171027PubMedGoogle Scholar
Mayer-Davis  EJ, Dabelea  D, Lawrence  JM.  Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012.  N Engl J Med. 2017;377(3):301. doi:10.1056/NEJMc1706291PubMedGoogle ScholarCrossref
Dabelea  D, Stafford  JM, Mayer-Davis  EJ,  et al; SEARCH for Diabetes in Youth Research Group.  Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood.  JAMA. 2017;317(8):825-835. doi:10.1001/jama.2017.0686PubMedGoogle ScholarCrossref
Imperatore  G, Boyle  JP, Thompson  TJ,  et al; SEARCH for Diabetes in Youth Study Group.  Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth.  Diabetes Care. 2012;35(12):2515-2520. doi:10.2337/dc12-0669PubMedGoogle ScholarCrossref
Centers for Disease Control and Prevention. National Health and Nutrition Examination Surveys. Accessed October 21, 2019.
Centers for Disease Control and Prevention. About the National Health and Nutrition Examination Survey. Accessed October 24, 2019.
Centers for Disease Control and Prevention. NHANES questionnaires, datasets, and related documentation. Accessed October 21, 2019.
Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: 2005-2006 data documentation, codebook and frequencies. Accessed October 21, 2019.
Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: 2007-2008 data documentation, codebook and frequencies. Accessed October 21, 2019.
Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: 2011-2012 data documentation, codebook and frequencies. Accessed October 21, 2019.
Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: 2013-2014 data documentation, codebook and frequencies. Accessed October 21, 2019.
Paulmichl  K, Hatunic  M, Højlund  K,  et al; Beta-JUDO Investigators; RISC Investigators.  Modification and validation of the triglyceride-to-HDL cholesterol ratio as a surrogate of insulin sensitivity in white juveniles and adults without diabetes mellitus: the Single Point Insulin Sensitivity Estimator (SPISE).  Clin Chem. 2016;62(9):1211-1219. doi:10.1373/clinchem.2016.257436PubMedGoogle ScholarCrossref
Kuczmarski  RJ, Ogden  CL, Guo  SS,  et al.  2000 CDC growth charts for the United States: methods and development.  Vital Health Stat 11. 2002;11(246):1-190.PubMedGoogle Scholar
Silverman  BW.  Density Estimation for Statistics and Data Analysis. London, UK: Chapman and Hall; 1986. doi:10.1007/978-1-4899-3324-9
Graubard  BI, Korn  EL.  Predictive margins with survey data.  Biometrics. 1999;55(2):652-659. doi:10.1111/j.0006-341X.1999.00652.xPubMedGoogle ScholarCrossref
Bieler  GS, Brown  GG, Williams  RL, Brogan  DJ.  Estimating model-adjusted risks, risk differences, and risk ratios from complex survey data.  Am J Epidemiol. 2010;171(5):618-623. doi:10.1093/aje/kwp440PubMedGoogle ScholarCrossref
Davies  MJ, Raymond  NT, Day  JL, Hales  CN, Burden  AC.  Impaired glucose tolerance and fasting hyperglycaemia have different characteristics.  Diabet Med. 2000;17(6):433-440. doi:10.1046/j.1464-5491.2000.00246.xPubMedGoogle ScholarCrossref
Tripathy  D, Carlsson  M, Almgren  P,  et al.  Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study.  Diabetes. 2000;49(6):975-980. doi:10.2337/diabetes.49.6.975PubMedGoogle ScholarCrossref
Meigs  JB.  The metabolic syndrome.  BMJ. 2003;327(7406):61-62. doi:10.1136/bmj.327.7406.61PubMedGoogle ScholarCrossref
Festa  A, D’Agostino  R  Jr, Hanley  AJG, Karter  AJ, Saad  MF, Haffner  SM.  Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose.  Diabetes. 2004;53(6):1549-1555. doi:10.2337/diabetes.53.6.1549PubMedGoogle ScholarCrossref
Hanefeld  M, Koehler  C, Fuecker  K, Henkel  E, Schaper  F, Temelkova-Kurktschiev  T; Impaired Glucose Tolerance for Atherosclerosis and Diabetes study.  Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes study.  Diabetes Care. 2003;26(3):868-874. doi:10.2337/diacare.26.3.868PubMedGoogle ScholarCrossref
Meyer  C, Pimenta  W, Woerle  HJ,  et al.  Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans.  Diabetes Care. 2006;29(8):1909-1914. doi:10.2337/dc06-0438PubMedGoogle ScholarCrossref
Færch  K, Johansen  NB, Witte  DR, Lauritzen  T, Jørgensen  ME, Vistisen  D.  Relationship between insulin resistance and β-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes.  J Clin Endocrinol Metab. 2015;100(2):707-716. doi:10.1210/jc.2014-2853PubMedGoogle ScholarCrossref
Faerch  K, Borch-Johnsen  K, Holst  JJ, Vaag  A.  Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes?  Diabetologia. 2009;52(9):1714-1723. doi:10.1007/s00125-009-1443-3PubMedGoogle ScholarCrossref
Færch  K, Pacini  G, Nolan  JJ, Hansen  T, Tura  A, Vistisen  D.  Impact of glucose tolerance status, sex, and body size on glucose absorption patterns during OGTTs.  Diabetes Care. 2013;36(11):3691-3697. doi:10.2337/dc13-0592PubMedGoogle ScholarCrossref
Abdul-Ghani  MA, Tripathy  D, DeFronzo  RA.  Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose.  Diabetes Care. 2006;29(5):1130-1139. doi:10.2337/dc05-2179PubMedGoogle ScholarCrossref
Weigensberg  MJ, Ball  GD, Shaibi  GQ, Cruz  ML, Goran  MI.  Decreased beta-cell function in overweight Latino children with impaired fasting glucose.  Diabetes Care. 2005;28(10):2519-2524. doi:10.2337/diacare.28.10.2519PubMedGoogle ScholarCrossref
Bacha  F, Lee  S, Gungor  N, Arslanian  SA.  From pre-diabetes to type 2 diabetes in obese youth: pathophysiological characteristics along the spectrum of glucose dysregulation.  Diabetes Care. 2010;33(10):2225-2231. doi:10.2337/dc10-0004PubMedGoogle ScholarCrossref
Weiss  R, Santoro  N, Giannini  C, Galderisi  A, Umano  GR, Caprio  S.  Prediabetes in youth: mechanisms and biomarkers.  Lancet Child Adolesc Health. 2017;1(3):240-248. doi:10.1016/S2352-4642(17)30044-5PubMedGoogle ScholarCrossref
Punthakee  Z, Alméras  N, Després  J-P,  et al.  Impact of rosiglitazone on body composition, hepatic fat, fatty acids, adipokines and glucose in persons with impaired fasting glucose or impaired glucose tolerance: a sub-study of the DREAM trial.  Diabet Med. 2014;31(9):1086-1092. doi:10.1111/dme.12512PubMedGoogle ScholarCrossref
Saito  T, Watanabe  M, Nishida  J,  et al; Zensharen Study for Prevention of Lifestyle Diseases Group.  Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial.  Arch Intern Med. 2011;171(15):1352-1360. doi:10.1001/archinternmed.2011.275PubMedGoogle ScholarCrossref
Zhang  X, Imperatore  G, Thomas  W,  et al.  Effect of lifestyle interventions on glucose regulation among adults without impaired glucose tolerance or diabetes: a systematic review and meta-analysis.  Diabetes Res Clin Pract. 2017;123:149-164. doi:10.1016/j.diabres.2016.11.020PubMedGoogle ScholarCrossref
Glümer  C, Jørgensen  T, Borch-Johnsen  K; Inter99 study.  Prevalences of diabetes and impaired glucose regulation in a Danish population: the Inter99 study.  Diabetes Care. 2003;26(8):2335-2340. doi:10.2337/diacare.26.8.2335PubMedGoogle ScholarCrossref
DECODE Study Group.  Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts.  Diabetes Care. 2003;26(1):61-69. doi:10.2337/diacare.26.1.61PubMedGoogle ScholarCrossref
Williams  JW, Zimmet  PZ, Shaw  JE,  et al.  Gender differences in the prevalence of impaired fasting glycaemia and impaired glucose tolerance in Mauritius: does sex matter?  Diabet Med. 2003;20(11):915-920. doi:10.1046/j.1464-5491.2003.01059.xPubMedGoogle ScholarCrossref
Blake  DR, Meigs  JB, Muller  DC, Najjar  SS, Andres  R, Nathan  DM.  Impaired glucose tolerance, but not impaired fasting glucose, is associated with increased levels of coronary heart disease risk factors: results from the Baltimore Longitudinal Study on Aging.  Diabetes. 2004;53(8):2095-2100. doi:10.2337/diabetes.53.8.2095PubMedGoogle ScholarCrossref
Nóvoa  FJ, Boronat  M, Saavedra  P,  et al.  Differences in cardiovascular risk factors, insulin resistance, and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation: the Telde Study.  Diabetes Care. 2005;28(10):2388-2393. doi:10.2337/diacare.28.10.2388PubMedGoogle ScholarCrossref
van Genugten  RE, Utzschneider  KM, Tong  J,  et al; American Diabetes Association GENNID Study Group.  Effects of sex and hormone replacement therapy use on the prevalence of isolated impaired fasting glucose and isolated impaired glucose tolerance in subjects with a family history of type 2 diabetes.  Diabetes. 2006;55(12):3529-3535. doi:10.2337/db06-0577PubMedGoogle ScholarCrossref
Bonds  DE, Lasser  N, Qi  L,  et al.  The effect of conjugated equine oestrogen on diabetes incidence: the Women’s Health Initiative randomised trial.  Diabetologia. 2006;49(3):459-468. doi:10.1007/s00125-005-0096-0PubMedGoogle ScholarCrossref
Herman  WH, Ma  Y, Uwaifo  G,  et al; Diabetes Prevention Program Research Group.  Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program.  Diabetes Care. 2007;30(10):2453-2457. doi:10.2337/dc06-2003PubMedGoogle ScholarCrossref
Ziemer  DC, Kolm  P, Weintraub  WS,  et al.  Glucose-independent, black-white differences in hemoglobin A1c levels: a cross-sectional analysis of 2 studies.  Ann Intern Med. 2010;152(12):770-777. doi:10.7326/0003-4819-152-12-201006150-00004PubMedGoogle ScholarCrossref
Bergenstal  RM, Gal  RL, Connor  CG,  et al; T1D Exchange Racial Differences Study Group.  Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels.  Ann Intern Med. 2017;167(2):95-102. doi:10.7326/M16-2596PubMedGoogle ScholarCrossref
Saudek  CD, Brick  JC.  The clinical use of hemoglobin A1c.  J Diabetes Sci Technol. 2009;3(4):629-634. doi:10.1177/193229680900300402PubMedGoogle ScholarCrossref
Leong  A, Daya  N, Porneala  B,  et al.  Prediction of type 2 diabetes by hemoglobin A1c in two community-based cohorts.  Diabetes Care. 2018;41(1):60-68. doi:10.2337/dc17-0607PubMedGoogle ScholarCrossref
Lacy  ME, Wellenius  GA, Carnethon  MR,  et al.  Racial differences in the performance of existing risk prediction models for incident type 2 diabetes: the CARDIA Study.  Diabetes Care. 2016;39(2):285-291.PubMedGoogle Scholar
Fretts  AM, Howard  BV, McKnight  B,  et al.  Modest levels of physical activity are associated with a lower incidence of diabetes in a population with a high rate of obesity: the strong heart family study.  Diabetes Care. 2012;35(8):1743-1745. doi:10.2337/dc11-2321PubMedGoogle ScholarCrossref
Bell  JA, Kivimaki  M, Hamer  M.  Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies.  Obes Rev. 2014;15(6):504-515. doi:10.1111/obr.12157PubMedGoogle ScholarCrossref
Hales  CM, Fryar  CD, Carroll  MD, Freedman  DS, Ogden  CL.  Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016.  JAMA. 2018;319(16):1723-1725. doi:10.1001/jama.2018.3060PubMedGoogle ScholarCrossref
Galderisi  A, Giannini  C, Weiss  R,  et al.  Trajectories of changes in glucose tolerance in a multiethnic cohort of obese youths: an observational prospective analysis.  Lancet Child Adolesc Health. 2018;2(10):726-735. doi:10.1016/S2352-4642(18)30235-9PubMedGoogle ScholarCrossref
Knowler  WC, Barrett-Connor  E, Fowler  SE,  et al; Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512PubMedGoogle ScholarCrossref
Tuomilehto  J, Lindström  J, Eriksson  JG,  et al; Finnish Diabetes Prevention Study Group.  Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med. 2001;344(18):1343-1350. doi:10.1056/NEJM200105033441801PubMedGoogle ScholarCrossref
An  Y, Zhang  P, Wang  J,  et al.  Cardiovascular and all-cause mortality over a 23-year period among Chinese with newly diagnosed diabetes in the Da Qing IGT and Diabetes Study.  Diabetes Care. 2015;38(7):1365-1371. doi:10.2337/dc14-2498PubMedGoogle ScholarCrossref
Ramachandran  A, Snehalatha  C, Mary  S, Mukesh  B, Bhaskar  AD, Vijay  V; Indian Diabetes Prevention Programme (IDPP).  The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1).  Diabetologia. 2006;49(2):289-297. doi:10.1007/s00125-005-0097-zPubMedGoogle ScholarCrossref
Pan  XR, Li  GW, Hu  YH,  et al.  Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study.  Diabetes Care. 1997;20(4):537-544. doi:10.2337/diacare.20.4.537PubMedGoogle ScholarCrossref
Balion  CM, Raina  PS, Gerstein  HC,  et al.  Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: a systematic review.  Clin Chem Lab Med. 2007;45(9):1180-1185. doi:10.1515/CCLM.2007.505PubMedGoogle ScholarCrossref
Sampson  M, Elwell-Sutton  T, Bachmann  MO,  et al.  Discordance in glycemic categories and regression to normality at baseline in 10,000 people in a Type 2 diabetes prevention trial.  Sci Rep. 2018;8(1):6240. doi:10.1038/s41598-018-24662-yGoogle ScholarCrossref
Menke  A, Casagrande  S, Cowie  CC.  Prevalence of diabetes in adolescents aged 12 to 19 years in the United States, 2005-2014.  JAMA. 2016;316(3):344-345. doi:10.1001/jama.2016.8544PubMedGoogle ScholarCrossref
Gregg  EW, Hora  I, Benoit  SR.  Resurgence in diabetes-related complications.  JAMA. 2019;321(19):1867-1868. doi:10.1001/jama.2019.3471PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    December 2, 2019

    Prevalence of Prediabetes Among Adolescents and Young Adults in the United States, 2005-2016

    Author Affiliations
    • 1National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia
    • 2Department of Public Health and Epidemiology, Imperial College London, London, United Kingdom
    JAMA Pediatr. 2020;174(2):e194498. doi:10.1001/jamapediatrics.2019.4498
    Key Points

    Question  What is the prevalence of prediabetes in US adolescents and young adults?

    Findings  In this survey study of 5786 US adolescents and young adults, the prevalence of prediabetes was lower among adolescents than young adults and significantly higher in male than female individuals and in those with obesity overall. Participants with prediabetes in both age groups had significantly higher non–high-density lipoprotein cholesterol levels, systolic blood pressure, central adiposity, and lower insulin sensitivity than individuals with normal glucose tolerance.

    Meaning  Adolescents and young adults with prediabetes present an unfavorable cardiometabolic risk profile and are therefore at increased risk of not only developing type 2 diabetes, but also cardiovascular diseases.


    Importance  Individuals with prediabetes are at increased risk of developing type 2 diabetes, chronic kidney disease, and cardiovascular disease. The incidence and prevalence of type 2 diabetes in the US adolescent population have increased in the last decade. Therefore, it is important to monitor the prevalence of prediabetes and varying levels of glucose tolerance to assess the future risk of type 2 diabetes in the youngest segment of the population.

    Objective  To examine the prevalence of impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and increased glycated hemoglobin A1c (HbA1c) levels in US adolescents (aged 12-18 years) and young adults (aged 19-34 years) without diabetes.

    Design, Setting, and Participants  This cross-sectional analyses of the 2005-2016 National Health and Nutrition Examination Survey assessed a population-based sample of adolescents and young adults who were not pregnant, did not have diabetes, and had measured fasting plasma glucose, 2-hour plasma glucose after a 75-g oral glucose tolerance test, and HbA1c levels. Analysis began in April 2017.

    Main Outcomes and Measures  Impaired fasting glucose was defined as fasting plasma glucose of 100 mg/dL to less than 126 mg/dL, IGT as 2-hour plasma glucose of 140 mg/dL to less than 200 mg/dL, and increased HbA1c level as HbA1c level between 5.7% and 6.4%. The prevalence of IFG, isolated IFG, IGT, isolated IGT, increased HbA1c level, isolated increased HbA1c level, and prediabetes (defined as having IFG, IGT, or increased HbA1c level) were estimated. Fasting insulin levels and cardiometabolic risk factors across glycemic abnormality phenotypes were also compared. Obesity was defined as having age- and sex-specific body mass index (calculated as weight in kilograms divided by height in meters squared) in the 95th percentile or higher in adolescents or 30 or higher in young adults.

    Results  Of 5786 individuals, 2606 (45%) were adolescents and 3180 (55%) were young adults. Of adolescents, 50.6% (95% CI, 47.6%-53.6%) were boys, and 50.6% (95% CI, 48.8%-52.4%) of young adults were men. Among adolescents, the prevalence of prediabetes was 18.0% (95% CI, 16.0%-20.1%) and among young adults was 24.0% (95% CI, 22.0%-26.1%). Impaired fasting glucose constituted the largest proportion of prediabetes, with prevalence of 11.1% (95% CI, 9.5%-13.0%) in adolescents and 15.8% (95% CI, 14.0%-17.9%) in young adults. In multivariable logistic models including age, sex, race/ethnicity, and body mass index, the predictive marginal prevalence of prediabetes was significantly higher in male than in female individuals (22.5% [95% CI, 19.5%-25.4%] vs 13.4% [95% CI, 10.8%-16.5%] in adolescents and 29.1% [95% CI, 26.4%-32.1%] vs 18.8% [95% CI, 16.5%-21.3%] in young adults). Prediabetes prevalence was significantly higher in individuals with obesity than in those with normal weight (25.7% [95% CI, 20.0%-32.4%] vs 16.4% [95% CI, 14.3%-18.7%] in adolescents and 36.9% [95% CI, 32.9%-41.1%] vs 16.6% [95% CI, 14.2%-19.4%] in young adults). Compared with persons with normal glucose tolerance, adolescents and young adults with prediabetes had significantly higher non–high-density lipoprotein cholesterol levels, systolic blood pressure, central adiposity, and lower insulin sensitivity (P < .05 for all).

    Conclusions and Relevance  In the United States, about 1 of 5 adolescents and 1 of 4 young adults have prediabetes. The adjusted prevalence of prediabetes is higher in male individuals and in people with obesity. Adolescents and young adults with prediabetes also present an unfavorable cardiometabolic risk profile, putting them both at increased risk of type 2 diabetes and cardiovascular diseases.