[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.191.0. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Gunter  B. Media Sex: What Are the Issues? London, United Kingdom: Routledge; 2001.
2.
Cooper  A. Cybersex: The Dark Side of the Force: A Special Issue of the Journal Sexual Addiction & Compulsivity. London, United Kingdom: Brunner-Routledge; 2000.
3.
Paul  P.  Pornified. New York, NY: Times Books; 2007.
4.
McNair  B. Striptease Culture. London, United Kingdom: Routledge; 2002.
5.
Deaner  RO, Khera  AV, Platt  ML.  Monkeys pay per view: adaptive valuation of social images by rhesus macaques.  Curr Biol. 2005;15(6):543-548.PubMedGoogle ScholarCrossref
6.
Svedin  CG, Åkerman  I, Priebe  G.  Frequent users of pornography: a population based epidemiological study of Swedish male adolescents.  J Adolesc. 2011;34(4):779-788.PubMedGoogle ScholarCrossref
7.
Fattore  L, Melis  M, Fadda  P, Pistis  M, Fratta  W.  The endocannabinoid system and nondrug rewarding behaviours.  Exp Neurol. 2010;224(1):23-36. PubMedGoogle ScholarCrossref
8.
Müller  CP, Schumann  G.  To use or not to use: expanding the view on non-addictive psychoactive drug consumption and its implications.  Behav Brain Sci. 2011;34(6):328-347.PubMedGoogle ScholarCrossref
9.
Knudsen  SV, Mårtenson  LL, Månsson  S-A.  Generation P? Aarhus, Denmark: Aarhus Universitetsforlag; 2007.
10.
Meerkerk  G-J, Van Den Eijnden  RJ, Garretsen  HFL.  Predicting compulsive Internet use: it’s all about sex!  Cyberpsychol Behav. 2006;9(1):95-103.PubMedGoogle ScholarCrossref
11.
Struthers  WM.  Wired for Intimacy. Downers Grove, IL: InterVarsity Press; 2010.
12.
Volkow  N, Li  T-K.  The neuroscience of addiction.  Nat Neurosci. 2005;8(11):1429-1430.PubMedGoogle ScholarCrossref
13.
Kalivas  PW, Volkow  ND.  The neural basis of addiction: a pathology of motivation and choice.  Am J Psychiatry. 2005;162(8):1403-1413.PubMedGoogle ScholarCrossref
14.
Gerdeman  GL, Partridge  JG, Lupica  CR, Lovinger  DM.  It could be habit forming: drugs of abuse and striatal synaptic plasticity.  Trends Neurosci. 2003;26(4):184-192.PubMedGoogle ScholarCrossref
15.
Kühn  S, Gallinat  J.  Common biology of craving across legal and illegal drugs: a quantitative meta-analysis of cue-reactivity brain response.  Eur J Neurosci. 2011;33(7):1318-1326.PubMedGoogle ScholarCrossref
16.
Wittmann  BC, Daw  ND, Seymour  B, Dolan  RJ.  Striatal activity underlies novelty-based choice in humans.  Neuron. 2008;58(6):967-973.PubMedGoogle ScholarCrossref
17.
Hyman  SE, Malenka  RC, Nestler  EJ.  Neural mechanisms of addiction: the role of reward-related learning and memory.  Annu Rev Neurosci. 2006;29:565-598.PubMedGoogle ScholarCrossref
18.
Barrós-Loscertales  A, Garavan  H, Bustamante  JC,  et al.  Reduced striatal volume in cocaine-dependent patients.  Neuroimage. 2011;56(3):1021-1026.PubMedGoogle ScholarCrossref
19.
Das  D, Cherbuin  N, Anstey  KJ, Sachdev  PS, Easteal  S.  Lifetime cigarette smoking is associated with striatal volume measures.  Addict Biol. 2012;17(4):817-825PubMedGoogle ScholarCrossref
20.
Ersche  KD, Barnes  A, Jones  PS, Morein-Zamir  S, Robbins  TW, Bullmore  ET.  Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence.  Brain. 2011;134(pt 7):2013-2024.PubMedGoogle ScholarCrossref
21.
Hald  GM.  Gender differences in pornography consumption among young heterosexual Danish adults.  Arch Sex Behav. 2006;35(5):577-585.PubMedGoogle ScholarCrossref
22.
Ross  MW, Månsson  S-A, Daneback  K.  Prevalence, severity, and correlates of problematic sexual Internet use in Swedish men and women.  Arch Sex Behav. 2012;41(2):459-466.PubMedGoogle ScholarCrossref
23.
Sheehan  DV, Lecrubier  Y, Sheehan  KH,  et al.  The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 J Clin Psychiatry. 1998;59(suppl 20):22-33, quiz 34-57.PubMedGoogle Scholar
24.
Delmonico  D, Miller  J.  The Internet Sex-Screening Test: a comparison of sexual compulsives vs non-sexual compulsives.  Sex Relationship Ther. 2003;18(3):261-276. doi:10.1080/1468199031000153900.Google ScholarCrossref
25.
Carnes  PJ, Green  BA, Merlo  LJ, Polles  A, Carnes  S, Gold  MS.  PATHOS: a brief screening application for assessing sexual addiction.  J Addict Med. 2012;6(1):29-34.PubMedGoogle ScholarCrossref
26.
Young  KS.  Psychology of computer use: XL. addictive use of the Internet: a case that breaks the stereotype.  Psychol Rep. 1996;79(3, pt 1):899-902.PubMedGoogle ScholarCrossref
27.
Barke  A, Nyenhuis  N, Kröner-Herwig  B.  The German version of the Internet Addiction Test: a validation study.  Cyberpsychol Behav Soc Netw. 2012;15(10):534-542.PubMedGoogle ScholarCrossref
28.
Babor  TF, Higgins-Biddle  JC.  The Alcohol Use Disorders Identification Test. Geneva, Switzerland: World Health Organization; 2001.
29.
Beck  AT, Steer  RA, Ball  R, Ranieri  W.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients.  J Pers Assess. 1996;67(3):588-597.PubMedGoogle ScholarCrossref
30.
Hayasaka  S, Nichols  TE.  Combining voxel intensity and cluster extent with permutation test framework.  Neuroimage. 2004;23(1):54-63.PubMedGoogle ScholarCrossref
31.
Chao-Gan  Y, Yu-Feng  Z.  DPARSF: A MATLAB toolbox for “pipeline” Data Analysis of Resting-State fMRI.  Front Syst Neurosci. 2010;4:13.PubMedGoogle Scholar
32.
Biswal  B, Yetkin  FZ, Haughton  VM, Hyde  JS.  Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.  Magn Reson Med. 1995;34(4):537-541.PubMedGoogle ScholarCrossref
33.
Fox  MD, Snyder  AZ, Vincent  JL, Corbetta  M, Van Essen  DC, Raichle  ME.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks.  Proc Natl Acad Sci U S A. 2005;102(27):9673-9678.PubMedGoogle ScholarCrossref
34.
Tzourio-Mazoyer  N, Landeau  B, Papathanassiou  D,  et al.  Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.  Neuroimage. 2002;15(1):273-289.PubMedGoogle ScholarCrossref
35.
Schubert  R, Ritter  P, Wüstenberg  T,  et al.  Spatial attention related SEP amplitude modulations covary with BOLD signal in S1: a simultaneous EEG fMRI study.  Cereb Cortex. 2008;18(11):2686-2700.PubMedGoogle ScholarCrossref
36.
Murphy  K, Birn  RM, Handwerker  DA, Jones  TB, Bandettini  PA.  The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?  Neuroimage. 2009;44(3):893-905.PubMedGoogle ScholarCrossref
37.
Delgado  MR.  Reward-related responses in the human striatum.  Ann N Y Acad Sci. 2007;1104(1):70-88.PubMedGoogle ScholarCrossref
38.
Heinz  A, Grace  AA, Beck  A.  The intricacies of dopamine neuron modulation.  Biol Psychiatry. 2009;65(2):101-102.PubMedGoogle ScholarCrossref
39.
Apicella  P, Ljungberg  T, Scarnati  E, Schultz  W.  Responses to reward in monkey dorsal and ventral striatum.  Exp Brain Res. 1991;85(3):491-500.PubMedGoogle ScholarCrossref
40.
Apicella  P, Scarnati  E, Ljungberg  T, Schultz  W.  Neuronal activity in monkey striatum related to the expectation of predictable environmental events.  J Neurophysiol. 1992;68(3):945-960.PubMedGoogle Scholar
41.
Hassani  OK, Cromwell  HC, Schultz  W.  Influence of expectation of different rewards on behavior-related neuronal activity in the striatum .  J Neurophysiol. 2001;85(6):2477-2489. PubMedGoogle Scholar
42.
Karama  S, Lecours  AR, Leroux  J-M,  et al.  Areas of brain activation in males and females during viewing of erotic film excerpts.  Hum Brain Mapp. 2002;16(1):1-13.PubMedGoogle ScholarCrossref
43.
Redouté  J, Stoléru  S, Grégoire  MC,  et al.  Brain processing of visual sexual stimuli in human males.  Hum Brain Mapp. 2000;11(3):162-177.PubMedGoogle ScholarCrossref
44.
Stark  R, Schienle  A, Girod  C,  et al.  Erotic and disgust-inducing pictures: differences in the hemodynamic responses of the brain.  Biol Psychol. 2005;70(1):19-29.PubMedGoogle ScholarCrossref
45.
Walter  M, Bermpohl  F, Mouras  H,  et al.  Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing.  Neuroimage. 2008;40(4):1482-1494.PubMedGoogle ScholarCrossref
46.
Demos  KE, Heatherton  TF, Kelley  WM.  Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior.  J Neurosci. 2012;32(16):5549-5552.PubMedGoogle ScholarCrossref
47.
Stoléru  S, Fonteille  V, Cornélis  C, Joyal  C, Moulier  V.  Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: a review and meta-analysis.  Neurosci Biobehav Rev. 2012;36(6):1481-1509.PubMedGoogle ScholarCrossref
48.
Sescousse  G, Caldú  X, Segura  B, Dreher  J-C.  Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies.  Neurosci Biobehav Rev. 2013;37(4):681-696.PubMedGoogle ScholarCrossref
49.
Alexander  GE, DeLong  MR, Strick  PL.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex.  Annu Rev Neurosci. 1986;9(1):357-381.PubMedGoogle ScholarCrossref
50.
Utter  AA, Basso  MA.  The basal ganglia: an overview of circuits and function.  Neurosci Biobehav Rev. 2008;32(3):333-342.PubMedGoogle ScholarCrossref
51.
Miller  EK, Cohen  JD.  An integrative theory of prefrontal cortex function.  Annu Rev Neurosci. 2001;24(1):167-202.PubMedGoogle ScholarCrossref
52.
Cieslik  EC, Zilles  K, Caspers  S,  et al.  Is there “one” DLPFC in cognitive action control? evidence for heterogeneity from co-activation-based parcellation.  Cereb Cortex. 2013;23(11):2677-2689.PubMedGoogle ScholarCrossref
53.
Fuster  JM.  The prefrontal cortex—an update: time is of the essence.  Neuron. 2001;30(2):319-333.PubMedGoogle ScholarCrossref
54.
Feil  J, Sheppard  D, Fitzgerald  PB, Yücel  M, Lubman  DI, Bradshaw  JL.  Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control.  Neurosci Biobehav Rev. 2010;35(2):248-275.PubMedGoogle ScholarCrossref
55.
Hong  S-B, Kim  J-W, Choi  E-J,  et al.  Reduced orbitofrontal cortical thickness in male adolescents with Internet addiction.  Behav Brain Funct. 2013;9(1):11.PubMedGoogle ScholarCrossref
56.
Hong  S-B, Zalesky  A, Cocchi  L,  et al.  Decreased functional brain connectivity in adolescents with Internet addiction.  PLoS One. 2013;8(2):e57831.PubMedGoogle ScholarCrossref
57.
Lin  F, Zhou  Y, Du  Y,  et al.  Abnormal white matter integrity in adolescents with Internet addiction disorder: a tract-based spatial statistics study.  PLoS One. 2012;7(1):e30253.PubMedGoogle ScholarCrossref
58.
Jacobsen  LK, Giedd  JN, Gottschalk  C, Kosten  TR, Krystal  JH.  Quantitative morphology of the caudate and putamen in patients with cocaine dependence.  Am J Psychiatry. 2001;158(3):486-489.PubMedGoogle ScholarCrossref
59.
Wrase  J, Makris  N, Braus  DF,  et al.  Amygdala volume associated with alcohol abuse relapse and craving.  Am J Psychiatry. 2008;165(9):1179-1184.PubMedGoogle ScholarCrossref
60.
van Holst  RJ, van den Brink  W, Veltman  DJ, Goudriaan  AE.  Brain imaging studies in pathological gambling.  Curr Psychiatry Rep. 2010;12(5):418-425.PubMedGoogle ScholarCrossref
61.
Kühn  S, Romanowski  A, Schilling  C,  et al.  The neural basis of video gaming.  Transl Psychiatry. 2011;1(11):e53.PubMedGoogle ScholarCrossref
62.
Kühn  S, Gallinat  J.  Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume.  Mol Psychiatry.PubMedGoogle Scholar
63.
Everitt  BJ, Belin  D, Economidou  D, Pelloux  Y, Dalley  JW, Robbins  TW.  Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction.  Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3125–3135. PubMedGoogle ScholarCrossref
Original Investigation
July 2014

Brain Structure and Functional Connectivity Associated With Pornography Consumption: The Brain on Porn

Author Affiliations
  • 1Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
  • 2Clinic for Psychiatry and Psychotherapy, Charité University Medicine, St Hedwig-Krankenhaus, Berlin, Germany
  • 3University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
JAMA Psychiatry. 2014;71(7):827-834. doi:10.1001/jamapsychiatry.2014.93
Abstract

Importance  Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users.

Objective  To determine whether frequent pornography consumption is associated with the frontostriatal network.

Design, Setting, and Participants  In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity.

Main Outcomes and Measures  Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans.

Results  We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue–reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption.

Conclusions and Relevance  The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

×