Effects of Antipsychotic Medication on Brain Structure in Patients With Major Depressive Disorder and Psychotic Features: Neuroimaging Findings in the Context of a Randomized Placebo-Controlled Clinical Trial | Depressive Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.169. Please contact the publisher to request reinstatement.
1.
Alexander  GC, Gallagher  SA, Mascola  A, Moloney  RM, Stafford  RS.  Increasing off-label use of antipsychotic medications in the United States, 1995-2008.   Pharmacoepidemiol Drug Saf. 2011;20(2):177-184. doi:10.1002/pds.2082PubMedGoogle ScholarCrossref
2.
Jobski  K, Höfer  J, Hoffmann  F, Bachmann  C.  Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review.   Acta Psychiatr Scand. 2017;135(1):8-28. doi:10.1111/acps.12644PubMedGoogle ScholarCrossref
3.
Park  SY, Cervesi  C, Galling  B,  et al.  Antipsychotic use trends in youth with autism spectrum disorder and/or intellectual disability: a meta-analysis.   J Am Acad Child Adolesc Psychiatry. 2016;55(6):456-468.e4.PubMedGoogle ScholarCrossref
4.
Ray  WA, Chung  CP, Murray  KT, Hall  K, Stein  CM.  Atypical antipsychotic drugs and the risk of sudden cardiac death.   N Engl J Med. 2009;360(3):225-235. doi:10.1056/NEJMoa0806994PubMedGoogle ScholarCrossref
5.
Ray  WA, Stein  CM, Murray  KT,  et al.  Association of antipsychotic treatment with risk of unexpected death among children and youths.   JAMA Psychiatry. 2019;76(2):162-171. doi:10.1001/jamapsychiatry.2018.3421PubMedGoogle ScholarCrossref
6.
Schneider  LS, Dagerman  KS, Insel  P.  Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials.   JAMA. 2005;294(15):1934-1943. doi:10.1001/jama.294.15.1934PubMedGoogle ScholarCrossref
7.
Thompson  PM, Bartzokis  G, Hayashi  KM,  et al; HGDH Study Group.  Time-lapse mapping of cortical changes in schizophrenia with different treatments.   Cereb Cortex. 2009;19(5):1107-1123. doi:10.1093/cercor/bhn152PubMedGoogle ScholarCrossref
8.
Ho  BC, Andreasen  NC, Ziebell  S, Pierson  R, Magnotta  V.  Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia.   Arch Gen Psychiatry. 2011;68(2):128-137. doi:10.1001/archgenpsychiatry.2010.199PubMedGoogle ScholarCrossref
9.
Lesh  TA, Tanase  C, Geib  BR,  et al.  A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia.   JAMA Psychiatry. 2015;72(3):226-234. doi:10.1001/jamapsychiatry.2014.2178PubMedGoogle ScholarCrossref
10.
Szeszko  PR, Robinson  DG, Ikuta  T,  et al.  White matter changes associated with antipsychotic treatment in first-episode psychosis.   Neuropsychopharmacology. 2014;39(6):1324-1331. doi:10.1038/npp.2013.288PubMedGoogle ScholarCrossref
11.
Vernon  AC, Crum  WR, Lerch  JP,  et al.  Reduced cortical volume and elevated astrocyte density in rats chronically treated with antipsychotic drugs-linking magnetic resonance imaging findings to cellular pathology.   Biol Psychiatry. 2014;75(12):982-990. doi:10.1016/j.biopsych.2013.09.012PubMedGoogle ScholarCrossref
12.
Vernon  AC, Natesan  S, Modo  M, Kapur  S.  Effect of chronic antipsychotic treatment on brain structure: a serial magnetic resonance imaging study with ex vivo and postmortem confirmation.   Biol Psychiatry. 2011;69(10):936-944. doi:10.1016/j.biopsych.2010.11.010PubMedGoogle ScholarCrossref
13.
Konopaske  GT, Dorph-Petersen  KA, Pierri  JN, Wu  Q, Sampson  AR, Lewis  DA.  Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys.   Neuropsychopharmacology. 2007;32(6):1216-1223. doi:10.1038/sj.npp.1301233PubMedGoogle ScholarCrossref
14.
Konopaske  GT, Dorph-Petersen  KA, Sweet  RA,  et al.  Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys.   Biol Psychiatry. 2008;63(8):759-765. doi:10.1016/j.biopsych.2007.08.018PubMedGoogle ScholarCrossref
15.
Lieberman  JA, Tollefson  GD, Charles  C,  et al; HGDH Study Group.  Antipsychotic drug effects on brain morphology in first-episode psychosis.   Arch Gen Psychiatry. 2005;62(4):361-370. doi:10.1001/archpsyc.62.4.361PubMedGoogle ScholarCrossref
16.
Pfefferbaum  A, Sullivan  EV, Hedehus  M, Adalsteinsson  E, Lim  KO, Moseley  M.  In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism.   Alcohol Clin Exp Res. 2000;24(8):1214-1221. doi:10.1111/j.1530-0277.2000.tb02086.xPubMedGoogle ScholarCrossref
17.
Cousijn  J, Wiers  RW, Ridderinkhof  KR, van den Brink  W, Veltman  DJ, Goudriaan  AE.  Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls.   Neuroimage. 2012;59(4):3845-3851. doi:10.1016/j.neuroimage.2011.09.046PubMedGoogle ScholarCrossref
18.
Lang  DJ, Kopala  LC, Vandorpe  RA,  et al.  An MRI study of basal ganglia volumes in first-episode schizophrenia patients treated with risperidone.   Am J Psychiatry. 2001;158(4):625-631. doi:10.1176/appi.ajp.158.4.625PubMedGoogle ScholarCrossref
19.
Flint  AJ, Meyers  BS, Rothschild  AJ,  et al; STOP-PD II Study Group.  Sustaining remission of psychotic depression: rationale, design and methodology of STOP-PD II.   BMC Psychiatry. 2013;13:38. doi:10.1186/1471-244X-13-38PubMedGoogle ScholarCrossref
20.
Flint  AJ, Meyers  BS, Rothschild  AJ,  et al; STOP-PD II Study Group.  Effect of continuing olanzapine vs placebo on relapse among patients with psychotic depression in remission: the STOP-PD II randomized clinical trial.   JAMA. 2019;322(7):622-631. doi:10.1001/jama.2019.10517PubMedGoogle ScholarCrossref
21.
Jorm  AF.  The Informant Questionnaire on cognitive decline in the elderly (IQCODE): a review.   Int Psychogeriatr. 2004;16(3):275-293. doi:10.1017/S1041610204000390PubMedGoogle ScholarCrossref
22.
Folstein  MF, Folstein  SE, McHugh  PR.  “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician.   J Psychiatr Res. 1975;12(3):189-198. doi:10.1016/0022-3956(75)90026-6PubMedGoogle ScholarCrossref
23.
Raznahan  A, Shaw  P, Lalonde  F,  et al.  How does your cortex grow?   J Neurosci. 2011;31(19):7174-7177. doi:10.1523/JNEUROSCI.0054-11.2011PubMedGoogle ScholarCrossref
24.
Jones  DK.  Studying connections in the living human brain with diffusion MRI.   Cortex. 2008;44(8):936-952. doi:10.1016/j.cortex.2008.05.002PubMedGoogle ScholarCrossref
25.
Reuter  M, Schmansky  NJ, Rosas  HD, Fischl  B.  Within-subject template estimation for unbiased longitudinal image analysis.   Neuroimage. 2012;61(4):1402-1418. doi:10.1016/j.neuroimage.2012.02.084PubMedGoogle ScholarCrossref
26.
Hibar  DP, Stein  JL, Renteria  ME,  et al; Alzheimer’s Disease Neuroimaging Initiative; CHARGE Consortium; EPIGEN; IMAGEN; SYS.  Common genetic variants influence human subcortical brain structures.   Nature. 2015;520(7546):224-229. doi:10.1038/nature14101PubMedGoogle ScholarCrossref
27.
Kelly  S, Jahanshad  N, Zalesky  A,  et al.  Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group.   Mol Psychiatry. 2018;23(5):1261-1269. doi:10.1038/mp.2017.170PubMedGoogle ScholarCrossref
28.
Hua  K, Zhang  J, Wakana  S,  et al.  Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification.   Neuroimage. 2008;39(1):336-347. doi:10.1016/j.neuroimage.2007.07.053PubMedGoogle ScholarCrossref
29.
Oquendo  MA, Baca-Garcia  E, Kartachov  A,  et al.  A computer algorithm for calculating the adequacy of antidepressant treatment in unipolar and bipolar depression.   J Clin Psychiatry. 2003;64(7):825-833. doi:10.4088/JCP.v64n0714PubMedGoogle ScholarCrossref
30.
Weinberger  DR, Radulescu  E.  Finding the elusive psychiatric “lesion” with 21st-century neuroanatomy: a note of caution.   Am J Psychiatry. 2016;173(1):27-33. doi:10.1176/appi.ajp.2015.15060753PubMedGoogle ScholarCrossref
31.
Storsve  AB, Fjell  AM, Tamnes  CK,  et al.  Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.   J Neurosci. 2014;34(25):8488-8498. doi:10.1523/JNEUROSCI.0391-14.2014PubMedGoogle ScholarCrossref
32.
Fjell  AM, Grydeland  H, Krogsrud  SK,  et al.  Development and aging of cortical thickness correspond to genetic organization patterns.   Proc Natl Acad Sci U S A. 2015;112(50):15462-15467. doi:10.1073/pnas.1508831112PubMedGoogle ScholarCrossref
33.
Walhovd  KB, Krogsrud  SK, Amlien  IK,  et al.  Neurodevelopmental origins of lifespan changes in brain and cognition.   Proc Natl Acad Sci U S A. 2016;113(33):9357-9362. doi:10.1073/pnas.1524259113PubMedGoogle ScholarCrossref
34.
Manji  HK, Duman  RS.  Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics.   Psychopharmacol Bull. 2001;35(2):5-49.PubMedGoogle Scholar
35.
Maya Vetencourt  JF, Sale  A, Viegi  A,  et al.  The antidepressant fluoxetine restores plasticity in the adult visual cortex.   Science. 2008;320(5874):385-388. doi:10.1126/science.1150516PubMedGoogle ScholarCrossref
36.
Bartels  C, Wagner  M, Wolfsgruber  S, Ehrenreich  H, Schneider  A; Alzheimer’s Disease Neuroimaging Initiative.  Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression.   Am J Psychiatry. 2018;175(3):232-241. doi:10.1176/appi.ajp.2017.17040404PubMedGoogle ScholarCrossref
37.
Hawkins  PCT, Wood  TC, Vernon  AC,  et al.  An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers.   Hum Brain Mapp. 2018;39(1):319-331. doi:10.1002/hbm.23844PubMedGoogle ScholarCrossref
38.
Tost  H, Braus  DF, Hakimi  S,  et al.  Acute D2 receptor blockade induces rapid, reversible remodeling in human cortical-striatal circuits.   Nat Neurosci. 2010;13(8):920-922. doi:10.1038/nn.2572PubMedGoogle ScholarCrossref
39.
Yates  K, Lång  U, Cederlöf  M,  et al.  Association of psychotic experiences with subsequent risk of suicidal ideation, suicide attempts, and suicide deaths: a systematic review and meta-analysis of longitudinal population studies.   JAMA Psychiatry. 2019;76(2):180-189. doi:10.1001/jamapsychiatry.2018.3514PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    February 26, 2020

    Effects of Antipsychotic Medication on Brain Structure in Patients With Major Depressive Disorder and Psychotic Features: Neuroimaging Findings in the Context of a Randomized Placebo-Controlled Clinical Trial

    Author Affiliations
    • 1Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
    • 2Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    • 3UMass Memorial Health Care, University of Massachusetts Medical School, Worcester
    • 4University of Pittsburgh, Pittsburgh, Pennsylvania
    • 5Weill Cornell Medical College, New York, New York
    • 6Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
    • 7Department of Psychiatry, New York University School of Medicine, New York
    • 8Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
    • 9Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England
    • 10University Health Network, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    JAMA Psychiatry. 2020;77(7):674-683. doi:10.1001/jamapsychiatry.2020.0036
    Key Points

    Question  Using a double-blind, randomized, placebo-controlled design, what is the association of olanzapine vs placebo with change in brain structure in humans?

    Findings  In this prespecified secondary analysis imaging study embedded in a clinical trial in people with remitted psychotic depression, olanzapine exposure vs placebo was associated with decline in cortical thickness. However, illness relapse while receiving placebo was potentially associated with a decline in cortical thickness.

    Meaning  Our findings could support a reconsideration of the risks and benefits of antipsychotics and support differential effects on brain structure in those who stay well receiving placebo vs those who relapse.

    Abstract

    Importance  Prescriptions for antipsychotic medications continue to increase across many brain disorders, including off-label use in children and elderly individuals. Concerning animal and uncontrolled human data suggest antipsychotics are associated with change in brain structure, but to our knowledge, there are no controlled human studies that have yet addressed this question.

    Objective  To assess the effects of antipsychotics on brain structure in humans.

    Design, Setting, and Participants  Prespecified secondary analysis of a double-blind, randomized, placebo-controlled trial over a 36-week period at 5 academic centers. All participants, aged 18 to 85 years, were recruited from the multicenter Study of the Pharmacotherapy of Psychotic Depression II (STOP-PD II). All participants had major depressive disorder with psychotic features (psychotic depression) and were prescribed olanzapine and sertraline for a period of 12 to 20 weeks, which included 8 weeks of remission of psychosis and remission/near remission of depression. Participants were then were randomized to continue receiving this regimen or to be switched to placebo and sertraline for a subsequent 36-week period. Data were analyzed between October 2018 and February 2019.

    Interventions  Those who consented to the imaging study completed a magnetic resonance imaging (MRI) scan at the time of randomization and a second MRI scan at the end of the 36-week period or at time of relapse.

    Main Outcomes and Measures  The primary outcome measure was cortical thickness in gray matter and the secondary outcome measure was microstructural integrity of white matter.

    Results  Eighty-eight participants (age range, 18-85 years) completed a baseline scan; 75 completed a follow-up scan, of which 72 (32 men and 40 women) were useable for final analyses. There was a significant treatment-group by time interaction in cortical thickness (left, t = 3.3; P = .001; right, t = 3.6; P < .001) but not surface area. No significant interaction was found for fractional anisotropy, but one for mean diffusivity of the white matter skeleton was present (t = −2.6, P = .01). When the analysis was restricted to those who sustained remission, exposure to olanzapine compared with placebo was associated with significant decreases in cortical thickness in the left hemisphere (β [SE], 0.04 [0.009]; t34.4 = 4.7; P <.001), and the right hemisphere (β [SE], 0.03 [0.009]; t35.1 = 3.6; P <.001). Post hoc analyses showed that those who relapsed receiving placebo experienced decreases in cortical thickness compared with those who sustained remission.

    Conclusions and Relevance  In this secondary analysis of a randomized clinical trial, antipsychotic medication was shown to change brain structure. This information is important for prescribing in psychiatric conditions where alternatives are present. However, adverse effects of relapse on brain structure support antipsychotic treatment during active illness.

    Trial Registration  ClinicalTrials.gov Identifier: NCT01427608

    ×