Regional Brain Volume in Depression and Anxiety Disorders

Marie-José van Tol, MSc; Nic J. A. van der Wee, MD, PhD; Odile A. van den Heuvel, MD, PhD; Marjan M. A. Nielen, PhD; Liliana R. Demenescu, MSc; André Aleman, PhD; Remco Renken, PhD; Mark A. van Buchem, MD, PhD; Frans G. Zitman, MD, PhD; Dick J. Veltman, MD, PhD

Context: Major depressive disorder (MDD), panic disorder, and social anxiety disorder are among the most prevalent and frequently co-occurring psychiatric disorders in adults and may have, at least in part, a common etiology.

Objective: To identify the unique and shared neuroanatomical profile of depression and anxiety, controlling for illness severity, medication use, sex, age of onset, and recurrence.

Design: Cross-sectional study.

Setting: Netherlands Study of Depression and Anxiety.

Participants: Outpatients with MDD (n=68), comorbid MDD and anxiety (n=88), panic disorder, and/or social anxiety disorder without comorbid MDD (n=68) and healthy controls (n=65).

Main Outcome Measures: Volumetric magnetic resonance imaging was conducted for voxel-based morphometry analyses. We tested voxelwise for the effects of diagnosis, age at onset, and recurrence on gray matter density. Post hoc, we studied the effects of use of medication, illness severity, and sex.

Results: We demonstrated lower gray matter volumes of the rostral anterior cingulate gyrus extending into the dorsal anterior cingulate gyrus in MDD, comorbid MDD and anxiety, and anxiety disorders without comorbid MDD, independent of illness severity, sex, and medication use. Furthermore, we demonstrated reduced right lateral inferior frontal volumes in MDD and reduced left middle/superior temporal volume in anxiety disorders without comorbid MDD. Also, patients with onset of depression before 18 years of age showed lower volumes of the subgenual prefrontal cortex.

Conclusions: Our findings indicate that reduced volume of the rostral-dorsal anterior cingulate gyrus is a generic effect in depression and anxiety disorders, independent of illness severity, medication use, and sex. This generic effect supports the notion of a shared etiology and may reflect a common symptom dimension related to altered emotion processing. Specific involvement of the inferior frontal cortex in MDD and lateral temporal cortex in anxiety disorders without comorbid MDD, on the other hand, may reflect disorder-specific symptom clusters. Early onset of depression is associated with a distinct neuroanatomical profile that may represent a vulnerability marker of depressive disorder.

Arch Gen Psychiatry. 2010;67(10):1002-1011
genetic mechanisms as well because abnormal cortisol levels have not been consistently found in MDD. A number of neuroimaging studies of MDD in humans have shown altered gray matter volumes in structures related to hypothalamic-pituitary-adrenal axis function, emotion perception, and regulation, ie, the hippocampus, amygdala, striatum, medial prefrontal cortex, and anterior cingulate gyrus (ACC). Most studies have reported decreased volumes in these structures, although findings have not been wholly consistent. Importantly, only few studies have explicitly controlled for anxiety comorbidity, although morphometric changes have also been identified in anxiety disorders. Whereas volumetric studies in SAD and GAD have been rare, studies in PD have fairly consistently found altered volumes in the amygdala, insular cortex, dorso medial prefrontal cortex, and ACC. In addition, altered brainstem, orbitofrontal cortex, and superior temporal volumes have been implicated in the neuropathology of PD. However, results of these studies may have been similarly confounded by the presence of comorbid depression. In summary, volumetric studies appear to indicate specific involvement of the hippocampus in depression, the insular cortex and superior temporal areas in anxiety disorders, and prefrontal and amygdalar areas in both depression and anxiety disorders. However, to our knowledge, the unique and common neuroanatomical profile of depression and anxiety has not been studied yet.

In this cross-sectional study, we investigated the shared and unique neuroanatomical profile of depression and anxiety, controlling for the effects of illness severity, use of selective serotonin reuptake inhibitors (SSRIs), and sex as potential confounders. We also investigated the effects of recurrence of depression and age at onset, reflecting changes associated with prolonged illness duration or increased vulnerability to depression and anxiety. Based on previous studies, we hypothesized that patients with MDD with or without comorbid anxiety disorders (PD, SAD, and/or GAD) would show decreased volumes in the hippocampus, amygdala, ACC, and medial prefrontal cortex. In addition, we predicted decreased volumes in the ACC, amygdala, insula, and superior temporal gyrus in patients with an anxiety disorder with or without comorbid MDD.

METHODS

PARTICIPANTS

Participants were recruited from the Netherlands Study of Depression and Anxiety (NESDA), a large-scale, multisite, longitudinal, observational cohort study. The design has been described in detail elsewhere. In short, NESDA was designed to be representative of those with depressive and anxiety disorders in different health care settings and stages of developmental history. Therefore, the sample is stratified for setting (community, primary care, and specialized mental health) and set up to include a range of psychopathology.

Of the 2981 NESDA respondents (main sample), participants aged between 18 and 57 years were asked to participate in the NESDA neuroimaging study if they met the DSM-IV criteria for a half-year diagnosis of MDD and/or anxiety disorder (PD, SAD, and/or GAD) or no lifetime DSM-IV diagnosis (ie, healthy controls). Personality disorders were not screened for and so were not used in the inclusion/exclusion criteria, although persons with known personality disorders (through information from clinics or through self-report) were not included in NESDA. Exclusion criteria for patients were the presence of axis-I disorders other than MDD, PD, SAD, or GAD and any use of psychotropic medication other than stable use of SSRI s or infrequent benzodiazepine use (ie, equivalent to 2 doses of 10 mg of oxazepam 3 times per week or use within 48 hours prior to scanning). Exclusion criteria for NESDA participants were the presence or history of major internal or neurological disorder, dependence on or recent abuse (past year) of alcohol and/or drugs, hypertension, and general magnetic resonance imaging contraindications. Diagnoses according to DSM-IV algorithms were established using the structured Composite International Diagnostic Interview, lifetime version 2.1 given by a trained interviewer.

Controls were currently free of, and had never met criteria for, depressive or anxiety disorders or any other axis-I disorder and were not taking any psychotropic drugs.

Overall, 301 native Dutch-speaking participants (233 patients and 68 controls) were included and underwent magnetic resonance imaging in 1 of 3 participating centers: Leiden University Medical Center, Amsterdam Medical Center, and University Medical Center Groningen. The ethical review boards of each center approved this study. All participants provided written informed consent after receiving written information.

ADDITIONAL PSYCHIATRIC MEASUREMENTS

Severity of depression and anxiety at the day of scanning was assessed using Dutch versions of the Beck Anxiety Inventory, the Montgomery Åsberg Depression Rating Scale, the Inventory of Depressive Symptomology, and the Fear Questionnaire.

IMAGE ACQUISITION

Imaging data were acquired using a Philips 3T magnetic resonance imaging system (Best, The Netherlands) located at the Leiden University Medical Center, Amsterdam Medical Center, and University Medical Center Groningen, equipped with a SENSE-8 (Leiden University Medical Center and University Medical Center Groningen) or SENSE-6 (Amsterdam Medical Center) channel head coil. For each subject, anatomical images were obtained using a sagittal 3-dimensional gradient-echo T1-weighted sequence (repetition time, 9 milliseconds, echo time, 3.5 milliseconds; matrix, 256 × 256; voxel size, 1 × 1 × 1 mm; 170 slices; duration, 4.3 minutes).

STATISTICAL ANALYSIS

Demographic and clinical data were analyzed using SPSS 16.0 (SPSS Inc, Chicago, Illinois). Significance was set at P < .05, and post hoc paired tests were Bonferroni corrected for multiple comparisons. Imaging data were analyzed using optimized voxel-based morphometry (VBM), following diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL), using Statistical Parametric Mapping software (SPM5) implemented in Matlab 7.1.0 (MathWorks, Natick, Massachusetts). Diffeomorphic anatomical registration through exponentiated lie (DARTEL) is a fully deformable method that is effectively unconstrained by number of degrees of freedom. It has proven good registration accuracy and has been recommended in favor of standard SPM normalization or the SPM-unified segmentation approaches for whole-brain and regional analysis without segmenting regions of interest.
Preprocessing of VBM-DARTEL included (1) manual reorientation of the images; (2) segmentation of the images into gray matter, white matter, and cerebrospinal fluid using the standard segmentation option implemented in SPM5; (3) applying the DARTEL approach for registration, normalization, and modulation, leaving the images in DARTEL space (in this approach, a DARTEL template is created based on the deformation fields that are produced during the segmentation procedure; next, all individual deformation fields were registered to this template); (4) smoothing of the gray matter and white matter images using an 8-mm full-width at half-maximum Gaussian kernel to increase signal to noise ratio and maximize comparability with published VBM studies of depression and anxiety.

In the resulting images, each voxel represents an absolute amount of brain volume, equivalent to the brain volume per unit prior to normalization.

Based on previous articles on volumetric differences in MDD and anxiety disorders, we set the following a priori regions of interest: hippocampus, amygdala, medial prefrontal cortex, orbitofrontal cortex, ACC, superior temporal gyrus, and insula. For the regions of interest, we set a threshold of $P < .001$, uncorrected, with an extent threshold of 50 voxels. To further protect against type I error, small volume correction was applied for the main comparison (effect of diagnosis) by centering a 16-mm sphere around the peak voxel. The resulting volumes of interest had to meet $P < .05$, familywise error voxel corrected, to be considered significant. For non–regions of interest: hippocampus, amygdala, medial prefrontal cortex, orbitofrontal cortex, ACC, superior temporal gyrus, and insula.

Also, a whole-brain voxelwise analysis was performed to test for effects of recurrence depression vs a single major depressive episode in CDA and MDD.

Age, total gray matter, and center (by means of 2 dummy variables) were entered as covariates in each comparison. White matter images were only used to verify whether volume changes occurred in the same regions as gray matter volume changes. For each SPM comparison, groups were matched for age, sex, scan site, and handedness. A description of the total sample is given in the results section. A description of matching procedure and resulting samples for the additional analyses (exclusion of SSRI users, age of onset, recurrence) can be found in the eAppendix (http://www.archgenpsychiatry.com).

To achieve maximal sensitivity, optimize voxel residual smoothness estimation, and exclude false positives in non–gray matter tissue, voxelwise comparisons were masked using a comparison-specific explicit optimal threshold gray matter mask created using the Masking toolbox. To preserve optimal normalization accuracy, we left the normalized, modulated, and smoothed images in DARTEL space. Therefore, coordinates are not equivalent to Montreal Neurological Institute coordinates. All regions are identified using the detailed brain atlas of Talairach and Tournoux.

RESULTS

SAMPLE DESCRIPTIVES

Data from 10 participants were excluded because of poor image quality. In addition, data from 2 controls were excluded because they had Montgomery Åsberg Depression Rating Scale scores greater than 8. Therefore we formed 4 groups based on Composite International Diagnostic Interview half-year diagnoses. Our final sample consisted of 289 subjects: 68 patients with MDD (MDD group), 88 with MDD and 1 or more comorbid anxiety disorder (CDA group: MDD and PD and/or SAD and/or GAD), 68 with 1 or more anxiety disorder (PD, SAD, and/or GAD) but no MDD (ANX group), and 65 controls.

Table 1 lists sample characteristics. Groups were matched for sex, handedness, distribution of participants scanned over sites, and age but not on education; the MDD and CDA groups both had fewer years of education than controls (MDD: $U = 1370.5$, $P < .008$; CDA: $U = 1594$, $P < .008$). Furthermore, the CDA group included more SSRI users than the MDD and ANX groups. A main effect of group was found on Montgomery Åsberg Depression Rating Scale, Inventory of Depressive Symptomology, Fear Questionnaire, and Beck Anxiety Inventory score. All diagnostic groups showed higher Montgomery Åsberg Depression Rating Scale, Inventory of Depressive Symptomology, Fear Questionnaire, and Beck Anxiety Inventory scores than the MDD and ANX groups and higher Beck Anxiety Inventory scores than the MDD group (all $z > -4.82$; all $P < .008$). In addition, the CDA group reported higher Montgomery Åsberg Depression Rating Scale and Inventory of Depressive Symptomology scores than the MDD and ANX groups and higher Beck Anxiety Inventory scores than the MDD group (all $z > -2.9$; $P < .008$). Between the NESDA baseline interview (time 1) and the magnetic resonance imaging session (time 2), depressive symptom ratings decreased in all diagnostic groups (Inventory of Depressive Symptomology; $t > 3.45$; $P < .001$). The MDD group showed an additional decrease in Beck Anxiety Inventory scores ($t_{65} = 3.15$; $P = .002$). Post hoc tests showed that currently remitted and mildly depressed subgroups but not moderately or severely depressed subgroups showed lower depressive symptom scores at time 2 than at time 1. The MDD and CDA groups did not differ in age at onset of the first MDD episode, and the CDA and ANX groups did not differ in age of onset of the first anxiety disorder. Within CDA, onset of anxiety generally preceded onset of the first depressive episode ($z = -5.22$; $P < .001$).

VBM RESULTS

Groups did not differ in total gray and white matter volumes (gray matter $F_{3,285} = 0.25$; $P = .34$ and white matter $F_{3,285} = 0.25$; $P = .86$). Lower regional gray matter density of the rostral ACC (Brodmann area [BA] 24b/c and BA 32; to identify the subregions of the ACC, we used the definition described by Bush et al34) was observed in patients compared with controls, extending into the dorsal ACC (BA 32) (Figure. A). Voxel-based comparison of the MDD, CDA, and ANX groups with controls showed that the ro-
rol/dorsal ACC reduction was most robust in the CDA group and was borderline significant in the MDD and ANX groups (MDD: x=0, y=32, z=−11; z=2.99; P=.001; ANX: x=0, y=41, z=1; z=3.08; P=.001). Gray matter results are listed in Table 2. The region surrounding the rostral/ dorsal ACC gray matter reductions showed white matter volumetric reductions as well (Table 2).

Furthermore, in the MDD group, gray matter volume reductions in the right inferior frontal gyrus were observed (Figure, B). The ANX group showed less left middle/superior temporal gyrus volume compared with controls (Figure, C). In both regions, white matter reductions were observed as well. The reverse contrasts (MDD, CDA, and ANX groups > controls) did not reveal significant clusters.

Table 2. Gray Matter and White Matter Reductions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MDD</th>
<th>CDA</th>
<th>ANX</th>
<th>HC</th>
<th>H</th>
<th>F</th>
<th>U</th>
<th>(\chi^2)</th>
<th>df</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample, No.</td>
<td>68</td>
<td>88</td>
<td>68</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>1.93</td>
<td>3</td>
<td>.59</td>
</tr>
<tr>
<td>Sex, No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7</td>
<td>6</td>
<td>.14</td>
</tr>
<tr>
<td>Male</td>
<td>24</td>
<td>29</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>44</td>
<td>59</td>
<td>50</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan site, No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.88</td>
<td>2</td>
<td>.03</td>
</tr>
<tr>
<td>AMC</td>
<td>18</td>
<td>28</td>
<td>21</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMC</td>
<td>26</td>
<td>35</td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMCG</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.68</td>
<td>2</td>
<td><.0001</td>
</tr>
<tr>
<td>Left</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>62</td>
<td>82</td>
<td>63</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRI use</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18</td>
<td>40</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>50</td>
<td>48</td>
<td>47</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>37.16 (10.24)</td>
<td>37.27 (10.64)</td>
<td>35.96 (9.45)</td>
<td>40.54 (9.71)</td>
<td>7.24</td>
<td>3</td>
<td>.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education, y</td>
<td>12.67 (2.91)</td>
<td>11.62 (3.13)</td>
<td>13.11 (3.21)</td>
<td>14.28 (2.86)</td>
<td>26.13</td>
<td>3</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADRS, total score c</td>
<td>13.01 (9.18)</td>
<td>19.94 (9.16)</td>
<td>10.93 (8.66)</td>
<td>1.05 (1.86)</td>
<td>147.73</td>
<td>3</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.39</td>
<td>0.49</td>
<td>0.35</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remitted</td>
<td>24</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate to severe</td>
<td>19</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS T1, total score</td>
<td>27.68 (9.96)</td>
<td>30.02 (11.51)</td>
<td>22.79 (11.91)</td>
<td>5.14 (3.51)</td>
<td>150</td>
<td>3</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1.57</td>
<td>5.57</td>
<td>4.49</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAI T1, total score</td>
<td>11.68 (8.86)</td>
<td>18.41 (9.10)</td>
<td>15.22 (9.9)</td>
<td>1.89 (3.11)</td>
<td>137.33</td>
<td>3</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.50</td>
<td>1.46</td>
<td>0.42</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FQ, total score</td>
<td>21.1 (15.39)</td>
<td>36.35 (19.09)</td>
<td>37.17 (20.48)</td>
<td>9.35 (7.71)</td>
<td>44.41</td>
<td>3</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.79</td>
<td>6.88</td>
<td>3.64</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval between T1 and T2, d</td>
<td>71.4 (59.1)</td>
<td>57.9 (49.5)</td>
<td>69.9 (33.2)</td>
<td>63.7 (28.8)</td>
<td>1.47</td>
<td>3</td>
<td>.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at onset, y</td>
<td></td>
</tr>
<tr>
<td>MDD</td>
<td>25.62 (10.36)</td>
<td>23.40 (11.38)</td>
<td>2505.5</td>
<td>2156</td>
<td>.13</td>
<td>.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANX</td>
<td>17.67 (10.27)</td>
<td>15.47 (11.27)</td>
<td>15.47 (11.27)</td>
<td>15.47 (11.27)</td>
<td>.70</td>
<td>.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence of MDD</td>
<td></td>
</tr>
<tr>
<td>Single episode</td>
<td>29</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent</td>
<td>39</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANX diagnosis</td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td>21</td>
<td>87</td>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past year</td>
<td>9</td>
<td>87</td>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDD diagnosis</td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td>68</td>
<td>87</td>
<td>37</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past year</td>
<td>68</td>
<td>87</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total volume, mL</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>728.7 (67.64)</td>
<td>729.98 (75.11)</td>
<td>739.98 (76.95)</td>
<td>725.48 (76.58)</td>
<td>.48</td>
<td>3.285</td>
<td>.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM</td>
<td>486.12 (63)</td>
<td>500.81 (64.76)</td>
<td>493.99 (64.38)</td>
<td>489.19 (63.66)</td>
<td>.78</td>
<td>3.285</td>
<td>.78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AMC, Amsterdam Medical Center; ANX, anxiety without MDD; BAI, Beck Anxiety Inventory; CDA, comorbid MDD and anxiety; FQ, Fear Questionnaire; GM, gray matter; H, Kruskal-Wallis nonparametric multiple sample test; HC, healthy controls; IDS, Inventory of Depressive Symptomatology; LUMC, Leiden University Medical Center; MADRS, Montgomery A˚sberg Depression Rating Scale; MDD, major depressive disorder; SSRI, selective serotonin reuptake inhibitor; T1, baseline measurement; T2, magnetic resonance imaging measurement; U, Mann-Whitney nonparametric 2-sample test; UMCG, University Medical Center Groningen; WM, white matter.

a Seventeen patients had MDD and generalized anxiety disorder (GAD); 17, MDD and panic disorder (PD); 9, MDD, PD, and GAD; 9, MDD and social anxiety disorder (SAD); 15, MDD, SAD, and GAD; 12, MDD, PD, and SAD; 9, MDD, PD, SAD, and GAD.

b Twenty patients had PD; 2, PD and GAD; 25, SAD; 3, SAD and GAD; 14, PD and SAD; 4, PD, SAD, and GAD (of which 18 had PD without agoraphobia; 22, PD with agoraphobia).

c Remitted depressive scores indicate an MADRS score of 0 to 8; mild, 9 to 18; and moderate to severe, greater than 19.
EFFECTS OF ILLNESS SEVERITY, SEX, AND SSRI USE

Analysis with SPSS showed that the dorsal/rostral ACC gray matter reduction occurred in all diagnostic groups relative to controls (all *P* < .05, Bonferroni corrected), whereas the right inferior frontal gyrus and left middle superior temporal gyrus gray matter volume reductions were specific to the MDD and ANX groups, respectively (*P* < .05, Bonferroni corrected).

No effect of depressive state was observed within group on ACC (MDD: *F*_{2,66}=0.98, *P* = .38; CDA: *F*_{2,80}=0.09, *P* = .91) or inferior frontal gyrus volume within MDD (*F*_{2,64}=2.14, *P* = .13). Adding Beck Anxiety Inventory and Fear Questionnaire scores to these models did not change these results (rostral/dorsal ACC MDD: *F*_{2,64}=0.51, *P* = .61; CDA: *F*_{2,78}=0.1, *P* = .91, inferior frontal gyrus *F*_{2,64}=2.06, *P* = .14).

Beck Anxiety Inventory or Fear Questionnaire scores were not predictive of rostral/dorsal ACC volume in patients (Beck Anxiety Inventory: *β*=0.05, *P* = .22; Fear Questionnaire: *β*=-0.06, *P* = .1), inferior frontal gyrus volumes in the MDD group (Beck Anxiety Inventory: *β*=-0.02, *P* = .85; Fear Questionnaire: *β*=0.14, *P* = .24), and of middle/superior temporal gyrus volumes in the ANX group (Beck Anxiety Inventory: *β*=-0.06, *P* = .52; Fear Questionnaire: *β*=0.02, *P* = .86).

No interaction of sex and diagnosis was observed in any region (rostral/dorsal ACC: *F*_{3,287}=1.46, *P* = .23; inferior frontal gyrus: *F*_{3,187}=0.56, *P* = .64; middle/superior temporal gyrus: *F*_{2,287}=1.6, *P* = .19), and omission of SSRI users from analysis did not affect the results.

AGE AT ONSET

A voxelwise, whole-brain analysis showed that patients with early onset of depression (MDD and CDA) had lower gray matter volumes of the subgenual ACC (BA 25) extending into the medial orbitofrontal gyrus compared with controls (Table 2, Figure, D), and no effect of sex was ob-

Figure. Effects of voxel-based comparisons. A, The main effect of diagnosis showing gray matter reductions in the rostral and dorsal anterior cingulate gyrus in patients compared with controls. B, The lower right inferior frontal gyrus volume is shown in patients with major depressive disorder (MDD) compared with controls. C, The lower right middle/superior temporal gyrus volume is shown in patients with anxiety disorders without comorbid MDD compared with controls. D, Patients with MDD (MDD and comorbid MDD and anxiety) with onset of the first depressive episode before 18 years of age are characterized by lower subgenual orbitofrontal cortex volumes than controls. All effects are displayed at *P* < .005, uncorrected.
To our knowledge, this is the first study to examine the neuroanatomical (ie, neuroradiological) correlates of both depression and anxiety while explicitly testing for the effects of their co-occurrence. Our findings indicate that reduced ACC volume, in particular regions of the ACC that are part of the rostral-ventral affective subdivision, is a generic effect in depression and anxiety disorders, present independently of depressive state or anxiety severity. This generic ACC volume reduction supports the notion of a shared etiology in depression and anxiety and may reflect a common pathophysiological mechanism related to altered emotion processing. The rostral ACC region has been found to be primarily involved in salience assessments of emotional and motivational information, while the dorsal ACC has been implicated in effortful processing, motivational processes, and regulating negative mood. The ventral part of the ACC (including the rostral ACC) has been associated with executive inhibition, induced sadness, and negative emotion processing in both patients with MDD and controls. The volume reduction observed in this study most likely reflects loss of glial cell density and neuronal size and may be the result of hypothalamus-pituitary-adrenal axis dysregulation. The rostral-ventral affective subdivision of the ACC has extensive connections with the orbitofrontal cortex, amygdala, and anterior insula, and therefore is an important hub in emotion perception and regulation. Also, abnormal ACC morphometry has been associated with worse outcome and/or worse treatment response in MDD.

The results are in concordance with previous imaging studies demonstrating affective ACC abnormalities in depression and anxiety disorders, without consistently controlling for comorbidity. Although our CDA group displayed more severe depressive and anxiety-related pathology, the 2 depressive groups were characterized by simi-

Table 2. Voxel-Based Morphometry Results

<table>
<thead>
<tr>
<th>Comparison</th>
<th>R/L</th>
<th>BA</th>
<th>Region</th>
<th>k</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray Matter Comparisons, Including SSRI Users</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients < HC</td>
<td>L</td>
<td>24b/c/32</td>
<td>Rostral anterior cingulate gyrus</td>
<td>152</td>
<td>0</td>
<td>42</td>
<td>4</td>
<td>3.54</td>
</tr>
<tr>
<td>MDD < HC</td>
<td>L</td>
<td>32</td>
<td>Dorsal anterior cingulate gyrus</td>
<td>178</td>
<td>-2</td>
<td>29</td>
<td>16</td>
<td>3.52</td>
</tr>
<tr>
<td>CDA < HC</td>
<td>R</td>
<td>44</td>
<td>Inferior frontal gyrus</td>
<td>178</td>
<td>36</td>
<td>11</td>
<td>27</td>
<td>3.69</td>
</tr>
<tr>
<td>ANX < HC</td>
<td>R</td>
<td>24b/c/32</td>
<td>Rostral anterior cingulate gyrus</td>
<td>83</td>
<td>2</td>
<td>42</td>
<td>6</td>
<td>3.50</td>
</tr>
<tr>
<td>White Matter Comparisons, Including SSRI Users</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients < HC</td>
<td>R</td>
<td></td>
<td>Rostral anterior cingulate gyrus</td>
<td>407</td>
<td>9</td>
<td>42</td>
<td>10</td>
<td>4.32</td>
</tr>
<tr>
<td>ANX < HC</td>
<td>L</td>
<td>21</td>
<td>Middle/superior temporal gyrus</td>
<td>181</td>
<td>-53</td>
<td>-3</td>
<td>-12</td>
<td>4.07</td>
</tr>
<tr>
<td>Gray Matter Comparisons of Early vs Late Onset of MDD in MDD and CDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO < HC</td>
<td>R</td>
<td>25/11</td>
<td>Subgenual ACC, orbitofrontal gyrus</td>
<td>127</td>
<td>2</td>
<td>32</td>
<td>-11</td>
<td>3.77</td>
</tr>
</tbody>
</table>

Abbreviations: ANX, anxiety without MDD; BA, Brodmann area; CDA, comorbid MDD and anxiety; DARTEL, diffeomorphic anatomical registration through exponentiated lie; HC, healthy controls; L, left; MDD, major depressive disorder; R, right; SSRI, selective serotonin reuptake inhibitor.

- Statistics, coordinates, and cluster sizes of the comparisons between patients (patients: MDD, CDA, and ANX) and HC. Small volume corrected at P < .05. Statistical Parametric Mapping smoothness: 11.2, 11.8, and 11.3 mm; 698.7 resels.
- Statistics, coordinates, and cluster sizes of the comparisons between patients (patients: MDD, CDA, and ANX) and HC. Uncorrected at P < .001. SVC corrected at P < .05. Statistical Parametric Mapping smoothness: 11.2, 11.8, 11.3 mm; 690.5 resels.

In this study we investigated the neuroanatomical characteristics of depression and anxiety in a large sample of outpatients with MDD, SAD, PD, and/or GAD. We used a whole-brain, DARTEL-VBM approach, tested explicitly for the effects of comorbidity of depression and anxiety, and controlled for the effects of illness severity, SSRI use, and sex. In addition, we tested voxelwise for the effects of age at onset and recurrence of depression.

We demonstrated lower gray matter volumes of the rostral ACC, extending into the dorsal ACC, in patients with mood and/or anxiety disorders. This rostral ACC volume decrease occurred in MDD, CDA, and ANX, independent of depressive state or anxiety severity, and no effect of SSRI use or sex was observed. Also, white matter reductions occurred in the region bordering the gray matter ACC reduction. Furthermore, we demonstrated reduced right inferior frontal gyrus volumes in MDD and reduced left middle/superior temporal gyrus volume in ANX compared with controls. In addition, depressed subjects (MDD and CDA) with onset of the first depressive episode before 18 years of age showed lower volumes in the subgenual ACC, extending into the medial orbitofrontal cortex. Finally, patients with MDD or CDA with recurrent depression showed no volumetric differences compared with patients with a single episode of depression.
lar rostral ACC gray matter volume reductions. Also, within groups, no associations between illness severity and ACC volume were observed. The latter finding appears to be at odds with studies reporting a negative correlation between illness severity and ACC volumes. For example, Frodl et al., in their sample of inpatients who were receiving medication, demonstrated a moderate correlation of depression severity with right but not left total ACC volume or subregions within the ACC. However, our findings are in agreement with studies that also failed to demonstrate a relation between illness severity and ACC volume, as was confirmed in a recent meta-analysis. In this study, we further demonstrated rostral ACC volume reductions even in (recently) remitted patients with depression, consistent with findings of abnormal rostral ACC activation following mood induction in remitted patients. Finally, our negative findings regarding SSRI use on ACC volume are in agreement with work of Asami et al. Recent animal studies also indicated that the neurogenesis-promoting effects of SSRIs may only be achieved in youth, not in adulthood or old age.

In addition to our rostral ACC findings, we also demonstrated reduced right inferior frontal gyrus gray matter volumes in MDD. This finding is in agreement with earlier VBM results of both decreased inferior frontal gyrus concentration and density in inpatients with MDD in which comorbid anxiety disorders were excluded as well. (Concentration here refers to the proportion of gray matter in each voxel, in which the changes in voxel size have not been accounted for, ie, the voxel value has not been modulated with the Jacobian determinant derived from the spatial normalization. This does not allow for comparison of the absolute voxel value.) Data from the present study indicate that this finding is specific to patients with MDD without comorbid anxiety disorders, independent of depression severity and SSRI use. The right inferior frontal gyrus has been implicated in inhibitory processes relevant to executive performance, selective response suppression, and cognitive processes related to negative affect, functions that are likely to be impaired in MDD. Therefore, reduced right inferior frontal gyrus volume may represent a neuroanatomical basis for these abnormalities. The left middle/superior temporal reduction in ANX is also in agreement with previous research and has repeatedly been linked to the pathophysiology of PD, presumably reflecting impaired evaluation of interoceptive information and altered threat processing as has been shown in functional neuroimaging studies.

Depressed subjects (MDD and CDA) with onset of the first depressive episode before 18 years of age showed lower gray matter volumes of the subgenual ACC relative to controls, extending into the medial orbitofrontal cortex, an effect that was not observed in patients with onset of the first depressive episode after 18 years of age. This finding is in line with results of Botteron and colleagues, who reported subgenual ACC volume decreases in adolescent-onset MDD, although no direct comparison with late-onset MDD was made. The subgenual ACC volume reduction may represent an early neurobiological lesion resulting in increased vulnerability to depressed mood, as abnormal subgenual ACC activity during sad mood induction through autobiographical epis-
most imaging studies to date have focused on frontal and subcortical regions, this posterior region was not included in our a priori regions of interest. However, inclusion of the posterior cingulate cortex as a region of interest in future imaging studies will likely be useful in further unraveling the complex neurodynamics of depression and anxiety. Notably, this region has been included in the default mode network as one of the highest energy-consuming regions and has been associated with larger deactivations during emotional face processing and threat processing in anxious patients. The posterior cingulate cortex has shown negative connectivity with the amygdala and positive connectivity with the dorsal ACC (BA 32), indicating that the posterior cingulate cortex is also involved in regulatory interactions with the amygdala, directly and via the ACC.

This study has a number of strengths. First, we were able to include large samples of patients and controls who were extensively screened and phenotyped according to the NESDA protocol; therefore, we could define subgroups of patients based on clinical comorbidity. Second, only stable SSRI use was allowed in our study, and less than half of our patients were taking antidepressant medication at the time of scanning. Consequently, we were able to control for the effects of SSRI on regional brain volume. Third, we used a whole-brain approach (VBM-DARTEL) that is rater unbiased in its segmentation process. Therefore, we did not restrict our analysis to a limited number of brain structures but were able to detect volumetric changes across the brain and to verify if gray matter changes were accompanied by white matter changes in the same region. Voxel-based methods have been found to show satisfactory correlations with manual segmentation approaches.

Several potential limitations should also be noted. First, because the epidemiological NESDA cohort was recruited through general practitioners and outpatient clinics, we may not have been fully able to capture the most severe end of the depressive spectrum. Second, MDD and CDA differed slightly from controls in years of education. However, adding years of education as a covariate did not change the results of the main comparison; if anything, the rostral ACC volume reduction was more robust. Third, assessment of onset and recurrence of depression was based on self-report, which theoretically may have resulted in both underdiagnosis and overdiagnosis of past depression and anxiety. However, this would have biased our results to the null and therefore led to underestimation of the true associations. Fourth, although persons with identified posttraumatic stress disorder where not included in the NESDA sample, subjects were not systematically screened for it. Therefore, we tested (post hoc) for the effect of trauma on ACC volume because data regarding the experience of emotional and physical trauma were available but no effect of self-reported trauma was observed on ACC volume and no interaction with diagnosis was observed (Appendix 2). Fifth, although similar Philips 3T systems were used at each site in this multicenter study, variability in image acquisition may have occurred owing to minor differences in hardware (receiver coil) and timing of software upgrades. However, no diagnosis × scan site bias occurred. Moreover, reliability of multis Scanner VBM has been proven good.

In conclusion, our results suggest a generic involvement of the ventral-rostral ACC in (comorbid) MDD, PD, and SAD, extending into the dorsal ACC that is independent of symptom severity and comorbidity status. Although our results do not directly address pathogenetic mechanisms involved in depression and anxiety, they support the notion of a shared mechanism in these disorders that may reflect impaired emotion processing and regulation, presumably through intricate connections of the ventral ACC with other limbic structures (ie, amygdala, orbitofrontal cortex, and anterior insula) that have been implicated in mood regulation models as well. Psychometric and functional imaging studies focusing on the common and distinct symptom profiles of depression and anxiety may further aid in unraveling the common and distinct phenomenological and neurobiological correlates of these disorders. In addition to this generic ACC effect, we showed disorder-specific involvement of the right inferior frontal gyrus in MDD and of the superior temporal gyrus in PD and/or SAD. Longitudinal studies and prospective studies should clarify whether these volumetric abnormalities are a result of the disease process or represent a vulnerability factor for the development of depression and anxiety in adulthood.

Submitted for Publication: December 16, 2009; final revision received March 14, 2010; accepted April 20, 2010.

Author Affiliations: Departments of Psychiatry (Drs van der Wee and Zitman and Ms van Tol) and Radiology (Dr van Buchem), Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden University, Leiden (Drs van der Wee and van Buchem and Ms van Tol); Departments of Psychiatry (Drs van den Heuvel, Nielen, and Veltman) and Anatomy and Neuroscience (Drs van den Heuvel and Veltman), Vrije Universiteit University Medical Center, Amsterdam; Research School of Behavioral and Cognitive Neurosciences Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen (Drs Aleman and Renken and Ms Demenescu), the Netherlands.

Correspondence: Marie-José van Tol, MSc, Department of Psychiatry and Leiden Institute for Brain and Cognition, Leiden University Medical Center, C-08-Q-87, PO Box 9600, 2300 RC Leiden, the Netherlands (m.j.van_tol@lumc.nl).

Author Contributions: Ms van Tol had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosure: None reported.

Funding/Support: The infrastructure for the Netherlands Study of Depression and Anxiety study (http://www.nesda.nl/) was supported by the Geestkracht program of the Netherlands Organisation for Health Research and Development (Health Care Research the Netherlands, Medical Science, grant No. 10-000-1002), Vrije Universiteit University Medical Center, Geestelijke GezondheidsZorg (GGs) in Geest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Scientific Institute for Quality of Healthcare, Netherlands Institute for Health Services Research, and Netherlands Institute of Mental Health and Addiction (Trimbos Institute).

34. Mohlman J, Price RB, Eldredh DA, Chazin D, Glover DM, Kates WR. The relation of worry to prefrontal cortex volume in older adults with and without general-
ized anxiety disorder [published online ahead of print June 25, 2009]. Psychia-

60. Gao Y, Kuo MJ, Kim SJ, Sung YH, Sim ME, Lee YS, Song SY, Kee BS, Lyoo IK.
Putaminal gray matter volume decrease in panic disorder: an optimized voxel-

61. Campbell S, MacQueen G. An update on regional brain volume differences

62. McKinnon MC, Yucel K, Nazarov A, MacQueen GM. A meta-analysis examining
clinical predictors of hippocampal volume in patients with major depressive

63. MacMaster FP, Russell A, Mirza Y, Keshavan MS, Taormina SP, Bhandari R, Boyd
C, Lynch M, Rose M, Ivey J, Moore GJ, Rosenberg DR. Pituitary volume in treatment-
naive pediatric major depressive disorder [published online ahead of print July 28,

64. MacMillan S, Szeszko PR, Moore GJ, Madden R, Lorch E, Ivey J, Banerjee SP,
Rosenberg DR. Increased amygdala: hippocampal volume ratios associated with
severity of anxiety in pediatric major depression. J Child Adolesc Psychopharmacol.

P. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to
change. 3-Dimensional Proportional System: An Approach to Cerebral Imaging.

66. Blom CV, Muller DJ, Auerbach SM, Li C, Lynch M, Rose M, Ivey J, Moore GJ,

67. MacMaster FP, Russell A, Mirza Y, Keshavan MS, Taormina SP, Bhandari R, Boyd
C, Lynch M, Rose M, Ivey J, Moore GJ, Rosenberg DR. Pituitary volume in treatment-
naive pediatric major depressive disorder [published online ahead of print July 28,

68. MacMillan S, Szeszko PR, Moore GJ, Madden R, Lorch E, Ivey J, Banerjee SP,
Rosenberg DR. Increased amygdala: hippocampal volume ratios associated with
severity of anxiety in pediatric major depression. J Child Adolesc Psychopharmacol.

69. Shin LM, Dougherty DD, Orr SP, Pitman RK, Lasko M, Macklin ML, Alpert NM,
based morphometry, a voxel-based morphometric study of ageing in 465 normal adult

70. Cotter D, Mackay D, Llandau S, Kerwin R, Everall I. Reduced glial cell density and
neuronal size in the anterior cingulate cortex in major depressive disorder. Arch

71. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to

72. Chen CH, Ridler K, Suckling J, Williams S, Fu CHY, Merlo-Pich E, Bullmore E.
Brain imaging correlates of depressive symptom severity and predictors of symp-

73. Frodl T, Jäger M, Born C, Ritter S, Kraft E, Zetzschke T, Bottlender R, Leinsinger
G, Reiser M, Müller HJ, Meisenzahl E. Anterior cingulate cortex does not differ
between patients with major depression and healthy controls, but relatively large
anteior cingulate cortex predicts a good clinical course. Psychiatry Res. 2008;
163(1):76-83.

Increased subgenual prefrontal cortex size in remitted patients with major de-
pressive disorder [published online ahead of print May 21, 2009]. Psychiatry Res.
2009;173(1):71-76.

R, Bögahn U, Aigner L. Ageing abolishes the effects of fluoxetine on neurogenesis.

76. Navailles S, Hof PR, Schmauss C. Antidepressant drug-induced stimulation of
mouse hippocampal neurogenesis is age-dependent and altered by early life stress.

77. Good CD, Johnsrude IS, Ashburner J, Henson RN, Frackowiak RS. A voxel-based

78. Forstmann BU, van den Wilderen WP, Ridderinkhof KR. Neural mechanisms,
temporal dynamics, and individual differences in interference control. J Cogn

79. Lieberman MD, Jarcho JM, Berman S, Nailboff BD, Suyenobu BY, Mandelkorn
M, Mayer EA. The neural correlates of placebo effects: a disruption account.

80. Uchida RR, Del-Ben CM, Santos AC, Araujo D, Crippa JA, Guimarães FS, Graeff
FG. Decreased left temporal lobe volume of panic patients measured by mag-

81. Vythilingam M, Anderson ER, Goddard A, Woods SW, Staal LH, Charney DS,
Bremner JD. Temporal lobe volume in panic disorder: a qualitative magnetic

SC, Bullmore ET, Brammer M, Gray JA. Neural responses to facial and vocal ex-

83. Delgado MR, Nearing KJ, Ledoux JE, Phelps EA. Neural circuitry underlying the
regulation of conditioned fear and its relation to extinction. Neuron. 2008;59
(5):829-838.

84. Jaffe SR, Moffitt TE, Caspi A, Fombonne E, Poulton R, Martin J. Differences in
early childhood risk factors for juvenile-onset and adult-onset depression. Arch

85. Nolan CL, Moore GJ, Madden R, Farchione T, Bartoli M, Lorch E, Stewart CM,
Rosenberg DR. Prefrontal cortical volume in childhood-onset major depres-

86. Berenbaum F, Gründemann T, Kirchhoff S, Spitzer R, Basler B, Lepage M,
Garnero L, Colliot O, Fossati P. Can voxel based morphometry, manual segmen-
tation and automated segmentation equally detect hippocampal volume differences

87. Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in de-

88. Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology

89. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY,
Uylings HB, Friedman L, Rajkowska G. Cellular changes in the postmortem hip-
ocampus of patients with major depression: preliminary findings. Proc Biol Sci.

90. Gentili C, Ricciardi E, Gobbini MI, Santarelli MF, Haxby JV, Pietrini P, Guazzelli
E, Dougherty DD, Orr SP, Pitman RK, Lasko M, Macklin ML, Alpert NM,
based morphometry, a voxel-based morphometric study of ageing in 465 normal adult

91. Zhao XH, Wang PJ, Li CB, Hu ZH, Xi Q, Wu WY, Tang XW. Altered default mode
network improvement after antidepressant treatment. Biol Psychiatry. 2007;62

92. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-
Lindenberg A. A validated network of effective amygdala connectivity. Neuroim-

93. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-
Lindenberg A. A validated network of effective amygdala connectivity. Neuroim-

94. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY,
Uylings HB, Friedman L, Rajkowska G. Cellular changes in the postmortem hip-
ocampus of patients with major depression: preliminary findings. Arch Gen Psychiatry.