Monoamine Oxidase A Binding in the Prefrontal and Anterior Cingulate Cortices During Acute Withdrawal From Heavy Cigarette Smoking | Lifestyle Behaviors | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.185.54. Please contact the publisher to request reinstatement.
1.
Makomaski Illing EM, Kaiserman MJ. Mortality attributable to tobacco use in Canada and its regions, 1998.  Can J Public Health. 2004;95(1):38-4414768740PubMedGoogle Scholar
2.
World Health Organization.  World Health Organization Report on the Global Tobacco Epidemic: Implementing Smoke-Free Environments. Geneva, Switzerland: World Health Organization; 2009
3.
Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJL, Ezzati M. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors.  PLoS Med. 2009;6(4):e100005819399161PubMedGoogle ScholarCrossref
4.
Garvey AJ, Bliss RE, Hitchcock JL, Heinold JW, Rosner B. Predictors of smoking relapse among self-quitters: a report from the Normative Aging Study [published correction appears in Addict Behav. 1992;17(5):513].  Addict Behav. 1992;17(4):367-3771502970PubMedGoogle ScholarCrossref
5.
Law M, Tang JL. An analysis of the effectiveness of interventions intended to help people stop smoking.  Arch Intern Med. 1995;155(18):1933-19417575046PubMedGoogle ScholarCrossref
6.
Laviolette SR, van der Kooy D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour.  Nat Rev Neurosci. 2004;5(1):55-6514708004PubMedGoogle ScholarCrossref
7.
Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG. Cigarette smoking saturates brainα4β2 nicotinic acetylcholine receptors.  Arch Gen Psychiatry. 2006;63(8):907-91516894067PubMedGoogle ScholarCrossref
8.
Cosgrove KP, Batis J, Bois F, Maciejewski PK, Esterlis I, Kloczynski T, Stiklus S, Krishnan-Sarin S, O’Malley S, Perry E, Tamagnan G, Seibyl JP, Staley JK. β2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking.  Arch Gen Psychiatry. 2009;66(6):666-67619487632PubMedGoogle ScholarCrossref
9.
Piper ME, Smith SS, Schlam TR, Fiore MC, Jorenby DE, Fraser D, Baker TB. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies [published correction appears in Arch Gen Psychiatry. 2010;67(1):77].  Arch Gen Psychiatry. 2009;66(11):1253-126219884613PubMedGoogle ScholarCrossref
10.
Herraiz T, Chaparro C. Human monoamine oxidase is inhibited by tobacco smoke:β-carboline alkaloids act as potent and reversible inhibitors.  Biochem Biophys Res Commun. 2005;326(2):378-38615582589PubMedGoogle ScholarCrossref
11.
Hauptmann N, Shih JC. 2-Naphthylamine, a compound found in cigarette smoke, decreases both monoamine oxidase A and B catalytic activity.  Life Sci. 2001;68(11):1231-124111233991PubMedGoogle ScholarCrossref
12.
Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP. Brain monoamine oxidase A inhibition in cigarette smokers.  Proc Natl Acad Sci U S A. 1996;93(24):14065-140698943061PubMedGoogle ScholarCrossref
13.
Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S. Elevated monoamine oxidase A levels in the brain: an explanation for the monoamine imbalance of major depression.  Arch Gen Psychiatry. 2006;63(11):1209-121617088501PubMedGoogle ScholarCrossref
14.
Meyer JH, Wilson AA, Sagrati S, Miler L, Rusjan P, Bloomfield PM, Clark M, Sacher J, Voineskos AN, Houle S. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence.  Arch Gen Psychiatry. 2009;66(12):1304-131219996035PubMedGoogle ScholarCrossref
15.
Sacher J, Wilson A, Houle S, Rusjan P, Hassan S, Bloomfield P, Stewart D, Meyer J. Elevated brain monoamine oxidase A binding in the early postpartum period.  Arch Gen Psychiatry. 2010;67(5):468-474Google ScholarCrossref
16.
Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic.  Nat Neurosci. 2007;10(9):1116-112417726478PubMedGoogle ScholarCrossref
17.
Liotti M, Mayberg HS, McGinnis S, Brannan SL, Jerabek P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression.  Am J Psychiatry. 2002;159(11):1830-184012411216PubMedGoogle ScholarCrossref
18.
Krüger S, Alda M, Young LT, Goldapple K, Parikh S, Mayberg HS. Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings.  Am J Psychiatry. 2006;163(2):257-26416449479PubMedGoogle ScholarCrossref
19.
Price JL, Drevets WC. Neurocircuitry of mood disorders.  Neuropsychopharmacology. 2010;35(1):192-21619693001PubMedGoogle ScholarCrossref
20.
al’Absi M, Hatsukami D, Davis GL, Wittmers LE. Prospective examination of effects of smoking abstinence on cortisol and withdrawal symptoms as predictors of early smoking relapse.  Drug Alcohol Depend. 2004;73(3):267-27815036549PubMedGoogle ScholarCrossref
21.
Carey MP, Kalra DL, Carey KB, Halperin S, Richards CS. Stress and unaided smoking cessation: a prospective investigation.  J Consult Clin Psychol. 1993;61(5):831-8388245280PubMedGoogle ScholarCrossref
22.
Kenford SL, Smith SS, Wetter DW, Jorenby DE, Fiore MC, Baker TB. Predicting relapse back to smoking: contrasting affective and physical models of dependence.  J Consult Clin Psychol. 2002;70(1):216-22711860048PubMedGoogle ScholarCrossref
23.
Haefely W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, Richards JG, Scherschlicht R, Da Prada M. Biochemistry and pharmacology of moclobemide, a prototype RIMA.  Psychopharmacology (Berl). 1992;106:(suppl)  S6-S141546143PubMedGoogle ScholarCrossref
24.
Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors.  Nat Rev Neurosci. 2006;7(4):295-30916552415PubMedGoogle ScholarCrossref
25.
Freis ED. Mental depression in hypertensive patients treated for long periods with large doses of reserpine.  N Engl J Med. 1954;251(25):1006-100813214379PubMedGoogle ScholarCrossref
26.
Hasler G, Fromm S, Carlson PJ, Luckenbaugh DA, Waldeck T, Geraci M, Roiser JP, Neumeister A, Meyers N, Charney DS, Drevets WC. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects.  Arch Gen Psychiatry. 2008;65(5):521-53118458204PubMedGoogle ScholarCrossref
27.
Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, Bain EE, Luckenbaugh DA, Herscovitch P, Charney DS, Drevets WC. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls.  Arch Gen Psychiatry. 2004;61(8):765-77315289275PubMedGoogle ScholarCrossref
28.
Verhoeff NPLG, Kapur S, Hussey D, Lee M, Christensen B, C Psych , Papatheodorou G, Zipursky RB. A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects.  Neuropsychopharmacology. 2001;25(2):213-22311425505PubMedGoogle ScholarCrossref
29.
Young SN, Smith SE, Pihl RO, Ervin FR. Tryptophan depletion causes a rapid lowering of mood in normal males.  Psychopharmacology (Berl). 1985;87(2):173-1773931142PubMedGoogle ScholarCrossref
30.
Rommelspacher H, Meier-Henco M, Smolka M, Kloft C. The levels of norharman are high enough after smoking to affect monoamineoxidase B in platelets.  Eur J Pharmacol. 2002;441(1-2):115-12512007928PubMedGoogle ScholarCrossref
31.
Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S. Significant dissociation of brain and plasma kinetics with antipsychotics.  Mol Psychiatry. 2002;7(3):317-32111920159PubMedGoogle ScholarCrossref
32.
Bergström M, Westerberg G, Långström B. 11C-harmine as a tracer for monoamine oxidase A (MAO-A): in vitro and in vivo studies.  Nucl Med Biol. 1997;24(4):287-2939257326PubMedGoogle ScholarCrossref
33.
Ginovart N, Meyer JH, Boovariwala A, Hussey D, Rabiner EA, Houle S, Wilson AA. Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase–A in the human brain.  J Cereb Blood Flow Metab. 2006;26(3):330-34416079787PubMedGoogle ScholarCrossref
34.
Wilson A, Meyer J, Garcia A, Singh K, Hussey D, Houle S, Ginovart N. Determination of the arterial input function of the MAO-A inhibitor [11C] harmine in human subjects [abstract].  J Labelled Compounds Radiopharm. 2003;46(S1):S367Google Scholar
35.
May T, Rommelspacher H, Pawlik M. [3H]Harman binding experiments, I: a reversible and selective radioligand for monoamine oxidase subtype A in the CNS of the rat.  J Neurochem. 1991;56(2):490-4991988552PubMedGoogle ScholarCrossref
36.
Fagerström KO. Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment.  Addict Behav. 1978;3(3-4):235-241735910PubMedGoogle ScholarCrossref
37.
Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire.  Br J Addict. 1991;86(9):1119-11271932883PubMedGoogle ScholarCrossref
38.
Shiffman S, Waters A, Hickcox M. The nicotine dependence syndrome scale: a multidimensional measure of nicotine dependence.  Nicotine Tob Res. 2004;6(2):327-34815203807PubMedGoogle ScholarCrossref
39.
First M, Spitzer R, Gibbon M, Williams J. Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-P), Version 2. New York, NY: Biometrics Research; 1995
40.
Blais MA, Norman DK. A psychometric evaluation of the DSM-IV personality disorder criteria.  J Pers Disord. 1997;11(2):168-1769203111PubMedGoogle ScholarCrossref
41.
Jarvik ME, Madsen DC, Olmstead RE, Iwamoto-Schaap PN, Elins JL, Benowitz NL. Nicotine blood levels and subjective craving for cigarettes.  Pharmacol Biochem Behav. 2000;66(3):553-55810899369PubMedGoogle ScholarCrossref
42.
Poindexter EH Jr, Carpenter RD. The isolation of harman and norharman from tobacco and cigarette smoke.  Phytochemistry. 1962;1(3):215-221Google ScholarCrossref
43.
Kartal M, Altun ML, Kurucu S. HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L.  J Pharm Biomed Anal. 2003;31(2):263-26912609665PubMedGoogle ScholarCrossref
44.
Guan Y, Louis ED, Zheng W. Toxicokinetics of tremorogenic natural products, harmane and harmine, in male Sprague-Dawley rats.  J Toxicol Environ Health A. 2001;64(8):645-66011766171PubMedGoogle ScholarCrossref
45.
Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment.  Pattern Recognition. 1999;32(1):71-86Google ScholarCrossref
46.
Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions.  Hum Brain Mapp. 1999;7(4):254-26610408769PubMedGoogle ScholarCrossref
47.
Ashburner J, Neelin P, Collins DL, Evans A, Friston K. Incorporating prior knowledge into image registration.  Neuroimage. 1997;6(4):344-3529417976PubMedGoogle ScholarCrossref
48.
Rusjan P, Mamo D, Ginovart N, Hussey D, Vitcu I, Yasuno F, Tetsuya S, Houle S, Kapur S. An automated method for the extraction of regional data from PET images.  Psychiatry Res. 2006;147(1):79-8916797168PubMedGoogle ScholarCrossref
49.
Ashburner J, Friston K. Multimodal image coregistration and partitioning: a unified framework.  Neuroimage. 1997;6(3):209-2179344825PubMedGoogle ScholarCrossref
50.
Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang D-R, Huang Y, Simpson N, Ngo K, Van Heertum R, Laruelle M. Imaging human mesolimbic dopamine transmission with positron emission tomography, I: accuracy and precision of D2 receptor parameter measurements in ventral striatum.  J Cereb Blood Flow Metab. 2001;21(9):1034-1057Google ScholarCrossref
51.
Baumert J, Ladwig K-H, Ruf E, Meisinger C, Döring A, Wichmann H-E.KORA Investigators.  Determinants of heavy cigarette smoking: are there differences in men and women? results from the population-based MONICA/KORA Augsburg surveys.  Nicotine Tob Res. 2010;12(12):1220-122720952600PubMedGoogle ScholarCrossref
52.
Pratt LA, Brody DJ. Depression and smoking in the U.S. household population aged 20 and over, 2005-2008.  NCHS Data Brief. 2010;34(34):1-820604991PubMedGoogle Scholar
53.
Glassman AH, Covey LS, Stetner F, Rivelli S. Smoking cessation and the course of major depression: a follow-up study.  Lancet. 2001;357(9272):1929-193211425414PubMedGoogle ScholarCrossref
54.
Fowler JS, Volkow ND, Ding YS, Wang GJ, Dewey S, Fischman MW, Foltin R, Hitzemann R. Positron emission tomography studies of dopamine-enhancing drugs.  J Clin Pharmacol. 1999;(suppl)  13S-16S10434242PubMedGoogle Scholar
55.
Knutson B, Taylor J, Kaufman M, Peterson R, Glover G. Distributed neural representation of expected value.  J Neurosci. 2005;25(19):4806-481215888656PubMedGoogle ScholarCrossref
56.
Sharot T, Riccardi AM, Raio CM, Phelps EA. Neural mechanisms mediating optimism bias.  Nature. 2007;450(7166):102-10517960136PubMedGoogle ScholarCrossref
57.
Tom SM, Fox CR, Trepel C, Poldrack RA. The neural basis of loss aversion in decision-making under risk.  Science. 2007;315(5811):515-51817255512PubMedGoogle ScholarCrossref
58.
Bhagwagar Z, Hinz R, Taylor M, Fancy S, Cowen P, Grasby P. Increased 5-HT2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907.  Am J Psychiatry. 2006;163(9):1580-158716946184PubMedGoogle ScholarCrossref
59.
Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, Ginovart N, Goulding V, Kennedy J, Wilson AA. Brain serotonin transporter binding potential measured with carbon11–labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes.  Arch Gen Psychiatry. 2004;61(12):1271-1279Google ScholarCrossref
60.
Meyer JH, McMain S, Kennedy SH, Korman L, Brown GM, DaSilva JN, Wilson AA, Blak T, Eynan-Harvey R, Goulding VS, Houle S, Links P. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm.  Am J Psychiatry. 2003;160(1):90-9912505806PubMedGoogle ScholarCrossref
61.
Harmer CJ, Hill SA, Taylor MJ, Cowen PJ, Goodwin GM. Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity.  Am J Psychiatry. 2003;160(5):990-99212727705PubMedGoogle ScholarCrossref
62.
Harmer CJ, O’Sullivan U, Favaron E, Massey-Chase R, Ayres R, Reinecke A, Goodwin GM, Cowen PJ. Effect of acute antidepressant administration on negative affective bias in depressed patients.  Am J Psychiatry. 2009;166(10):1178-118419755572PubMedGoogle ScholarCrossref
63.
Terracciano A, Costa PT Jr. Smoking and the five-factor model of personality.  Addiction. 2004;99(4):472-48115049747PubMedGoogle ScholarCrossref
64.
Alia-Klein N, Goldstein RZ, Kriplani A, Logan J, Tomasi D, Williams B, Telang F, Shumay E, Biegon A, Craig IW, Henn F, Wang G-J, Volkow ND, Fowler JS. Brain monoamine oxidase A activity predicts trait aggression.  J Neurosci. 2008;28(19):5099-510418463263PubMedGoogle ScholarCrossref
65.
Soliman A, Bagby RM, Wilson AA, Miler L, Clark M, Rusjan P, Sacher J, Houle S, Meyer JH. Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits.  Psychol Med. 2011;41(5):1051-106020810002PubMedGoogle ScholarCrossref
66.
Leroy C, Bragulat V, Berlin I, Grégoire M-C, Bottlaender M, Roumenov D, Dollé F, Bourgeois S, Penttilä J, Artiges E, Martinot J-L, Trichard C. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone.  J Clin Psychopharmacol. 2009;29(1):86-8819142115PubMedGoogle ScholarCrossref
67.
Klimek V, Zhu M-Y, Dilley G, Konick L, Overholser JC, Meltzer HY, May WL, Stockmeier CA, Ordway GA. Effects of long-term cigarette smoking on the human locus coeruleus.  Arch Gen Psychiatry. 2001;58(9):821-82711545664PubMedGoogle ScholarCrossref
68.
Pfau W, Skog K. Exposure toβ-carbolines norharman and harman.  J Chromatogr B Analyt Technol Biomed Life Sci. 2004;802(1):115-12615036003PubMedGoogle ScholarCrossref
69.
Ou X-M, Stockmeier CA, Meltzer HY, Overholser JC, Jurjus GJ, Dieter L, Chen K, Lu D, Johnson C, Youdim MBH, Austin MC, Luo J, Sawa A, May W, Shih JC. A novel role for glyceraldehyde-3-phosphate dehydrogenase and monoamine oxidase B cascade in ethanol-induced cellular damage.  Biol Psychiatry. 2010;67(9):855-86320022592PubMedGoogle ScholarCrossref
70.
Oquendo MA, Galfalvy H, Russo S, Ellis SP, Grunebaum MF, Burke A, Mann JJ. Prospective study of clinical predictors of suicidal acts after a major depressive episode in patients with major depressive disorder or bipolar disorder.  Am J Psychiatry. 2004;161(8):1433-144115285970PubMedGoogle ScholarCrossref
71.
Miller M, Hemenway D, Bell NS, Yore MM, Amoroso PJ. Cigarette smoking and suicide: a prospective study of 300,000 male active-duty Army soldiers.  Am J Epidemiol. 2000;151(11):1060-106310873129PubMedGoogle ScholarCrossref
72.
Barraclough B, Bunch J, Nelson B, Sainsbury P. A hundred cases of suicide: clinical aspects.  Br J Psychiatry. 1974;125(0):355-3734425774PubMedGoogle ScholarCrossref
73.
Hughes JR. Smoking and suicide: a brief overview.  Drug Alcohol Depend. 2008;98(3):169-17818676099PubMedGoogle ScholarCrossref
74.
Berlin I, Saïd S, Spreux-Varoquaux O, Launay J-M, Olivares R, Millet V, Lecrubier Y, Puech AJ. A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers.  Clin Pharmacol Ther. 1995;58(4):444-4527586937PubMedGoogle ScholarCrossref
75.
Fowler JS, Wang G-J, Volkow ND, Franceschi D, Logan J, Pappas N, Shea C, MacGregor RR, Garza V. Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence.  Am J Psychiatry. 2000;157(11):1864-186611058487PubMedGoogle ScholarCrossref
Original Article
Aug 2011

Monoamine Oxidase A Binding in the Prefrontal and Anterior Cingulate Cortices During Acute Withdrawal From Heavy Cigarette Smoking

Author Affiliations

Author Affiliations: Vivian M. Rakoff PET Imaging Centre (Drs Bacher, Houle, Xu, Soliman, Wilson, Sacher, Kish, Rusjan, and Meyer and Ms Miler), Addiction Program (Drs Bacher, Zawertailo, and Selby), Mood and Anxiety Disorders Division (Drs Sacher and Meyer), and Schizophrenia Program (Dr George), Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Ontario, Canada.

Funding Support: This research received project support from the Canadian Institutes of Health Research.

Author Affiliations: Vivian M. Rakoff PET Imaging Centre (Drs Bacher, Houle, Xu, Soliman, Wilson, Sacher, Kish, Rusjan, and Meyer and Ms Miler), Addiction Program (Drs Bacher, Zawertailo, and Selby), Mood and Anxiety Disorders Division (Drs Sacher and Meyer), and Schizophrenia Program (Dr George), Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Ontario, Canada.

Funding Support: This research received project support from the Canadian Institutes of Health Research.

Arch Gen Psychiatry. 2011;68(8):817-826. doi:10.1001/archgenpsychiatry.2011.82
Abstract

Context Greater prefrontal cortex and anterior cingulate cortex monoamine oxidase A (MAO-A) binding is associated with depressed mood. Substances in cigarette smoke, such as harman, inhibit MAO-A, and cigarette withdrawal is associated with depressed mood. Dysphoria during cigarette withdrawal predicts relapse. It is unknown whether MAO-A binding increases during early cigarette withdrawal.

Objectives To measure prefrontal and anterior cingulate cortex MAO-A binding during acute cigarette withdrawal and to assess the relationship with smoking severity, plasma levels of harman, and severity of depression.

Design Study via positron emission tomography of healthy control and cigarette-smoking individuals.

Patients Twenty-four healthy nonsmoking and 24 otherwise healthy cigarette-smoking individuals underwent positron emission tomography with harmine labeled with carbon 11. Healthy nonsmoking individuals underwent scanning once. Cigarette-smoking individuals underwent scanning after acute withdrawal and after active cigarette smoking. Cigarette smoking was heavy (≥25 cigarettes per day) or moderate (15-24 cigarettes per day).

Setting Tertiary care psychiatric hospital.

Main Outcome Measure An index of MAO-A density, MAO-A VT, was measured in the prefrontal and anterior cingulate cortices.

Results In heavy-smoking individuals, prefrontal and anterior cingulate cortex MAO-A VT was greater during withdrawal (23.7% and 33.3%, respectively; repeated-measures multivariate analysis of variance, F1,22 = 25.58, P < .001). During withdrawal from heavy smoking, prefrontal and anterior cingulate cortex MAO-A VT was greater than in healthy controls (25.0% and 25.6%, respectively; multivariate analysis of variance, F2,33 = 6.72, P = .004). The difference in MAO-A VT in the prefrontal cortex and anterior cingulate cortex between withdrawal and active, heavy smoking covaried with change in plasma harman levels in the prefrontal cortex and anterior cingulate cortex (multivariate analysis of covariance, F1,10 = 9.97, P = .01). The change in MAO-A VT between withdrawal and active, heavy smoking also covaried with severity of depression (multivariate analysis of covariance, F1,10 = 11.91, P = .006).

Conclusions The increase in prefrontal and anterior cingulate cortex MAO-A binding and associated reduction in plasma harman level represent a novel, additional explanation for depressed mood during withdrawal from heavy cigarette smoking. This finding resolves a longstanding paradox regarding the association of cigarette smoking with depression and suicide and argues for additional clinical trials on the effects of MAO-A inhibitors on quitting heavy cigarette smoking.

×