Antipsychotic Treatment and Functional Connectivity of the Striatum in First-Episode Schizophrenia | Neurology | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Weinberger  DR.  Implications of normal brain development for the pathogenesis of schizophrenia.  Arch Gen Psychiatry. 1987;44(7):660-669.PubMedGoogle ScholarCrossref
2.
Davis  KL, Kahn  RS, Ko  G, Davidson  M.  Dopamine in schizophrenia: a review and reconceptualization.  Am J Psychiatry. 1991;148(11):1474-1486.PubMedGoogle ScholarCrossref
3.
Howes  OD, Kambeitz  J, Kim  E,  et al.  The nature of dopamine dysfunction in schizophrenia and what this means for treatment.  Arch Gen Psychiatry. 2012;69(8):776-786.PubMedGoogle ScholarCrossref
4.
Huttunen  J, Heinimaa  M, Svirskis  T,  et al.  Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia.  Biol Psychiatry. 2008;63(1):114-117.PubMedGoogle ScholarCrossref
5.
Fusar-Poli  P, Howes  OD, Allen  P,  et al.  Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study.  Arch Gen Psychiatry. 2010;67(7):683-691.PubMedGoogle ScholarCrossref
6.
Liddle  PF, Friston  KJ, Frith  CD, Hirsch  SR, Jones  T, Frackowiak  RS.  Patterns of cerebral blood flow in schizophrenia.  Br J Psychiatry. 1992;160:179-186.PubMedGoogle ScholarCrossref
7.
Nielsen  MØ, Rostrup  E, Wulff  S,  et al.  Alterations of the brain reward system in antipsychotic naïve schizophrenia patients.  Biol Psychiatry. 2012;71(10):898-905.PubMedGoogle ScholarCrossref
8.
Koch  K, Wagner  G, Nenadic  I,  et al.  Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study.  Neuroscience. 2008;153(1):54-62.PubMedGoogle ScholarCrossref
9.
Quidé  Y, Morris  RW, Shepherd  AM, Rowland  JE, Green  MJ.  Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia.  Schizophr Res. 2013;150(2-3):468-475.PubMedGoogle ScholarCrossref
10.
Tu  PC, Lee  YC, Chen  YS, Li  CT, Su  TP.  Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia.  Schizophr Res. 2013;147(2-3):339-347.PubMedGoogle ScholarCrossref
11.
Orliac  F, Naveau  M, Joliot  M,  et al.  Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia.  Schizophr Res. 2013;148(1-3):74-80.PubMedGoogle ScholarCrossref
12.
Meyer-Lindenberg  A, Miletich  RS, Kohn  PD,  et al.  Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.  Nat Neurosci. 2002;5(3):267-271.PubMedGoogle ScholarCrossref
13.
Fusar-Poli  P, Howes  OD, Allen  P,  et al.  Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis.  Mol Psychiatry. 2011;16(1):67-75.PubMedGoogle ScholarCrossref
14.
Dandash  O, Fornito  A, Lee  J,  et al.  Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis.  Schizophr Bull. 2014;40(4):904-913PubMedGoogle ScholarCrossref
15.
Fornito  A, Harrison  BJ, Goodby  E,  et al.  Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis.  JAMA Psychiatry. 2013;70(11):1143-1151.PubMedGoogle ScholarCrossref
16.
Hall  H, Sedvall  G, Magnusson  O, Kopp  J, Halldin  C, Farde  L.  Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.  Neuropsychopharmacology. 1994;11(4):245-256.PubMedGoogle ScholarCrossref
17.
Kapur  S, Mamo  D.  Half a century of antipsychotics and still a central role for dopamine D2 receptors.  Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1081-1090.PubMedGoogle ScholarCrossref
18.
Lui  S, Li  T, Deng  W,  et al.  Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging.  Arch Gen Psychiatry. 2010;67(8):783-792.PubMedGoogle ScholarCrossref
19.
Bolding  MS, White  DM, Hadley  JA, Weiler  M, Holcomb  HH, Lahti  AC.  Antipsychotic drugs alter functional connectivity between the medial frontal cortex, hippocampus, and nucleus accumbens as measured by H215O PET.  Front Psychiatry. 2012;3:105.PubMedGoogle Scholar
20.
Sambataro  F, Blasi  G, Fazio  L,  et al.  Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia.  Neuropsychopharmacology. 2010;35(4):904-912.PubMedGoogle ScholarCrossref
21.
Nielsen  MO, Rostrup  E, Wulff  S,  et al.  Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia.  Arch Gen Psychiatry. 2012;69(12):1195-1204.PubMedGoogle ScholarCrossref
22.
Di Martino  A, Scheres  A, Margulies  DS,  et al.  Functional connectivity of human striatum: a resting state FMRI study.  Cereb Cortex. 2008;18(12):2735-2747.PubMedGoogle ScholarCrossref
23.
Hedlund  JL, Vieweg  BW.  The Brief Psychiatric Rating Scale (BPRS): a comprehensive review.  J Oper Psychiatr. 1980;11:48-65.Google Scholar
24.
Genovese  CR, Lazar  NA, Nichols  T.  Thresholding of statistical maps in functional neuroimaging using the false discovery rate.  Neuroimage. 2002;15(4):870-878.PubMedGoogle ScholarCrossref
25.
Alexander  GE, DeLong  MR, Strick  PL.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex.  Annu Rev Neurosci. 1986;9:357-381.PubMedGoogle ScholarCrossref
26.
Postuma  RB, Dagher  A.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications.  Cereb Cortex. 2006;16(10):1508-1521.PubMedGoogle ScholarCrossref
27.
Polli  FE, Barton  JJ, Thakkar  KN,  et al.  Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia.  Brain. 2008;131(pt 4):971-986.PubMedGoogle ScholarCrossref
28.
Lahti  AC, Holcomb  HH, Weiler  MA,  et al.  Clozapine but not haloperidol re-establishes normal task-activated rCBF patterns in schizophrenia within the anterior cingulate cortex.  Neuropsychopharmacology. 2004;29(1):171-178.PubMedGoogle ScholarCrossref
29.
Kapur  S.  Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia.  Am J Psychiatry. 2003;160(1):13-23.PubMedGoogle ScholarCrossref
30.
Jensen  J, Willeit  M, Zipursky  RB,  et al.  The formation of abnormal associations in schizophrenia: neural and behavioral evidence.  Neuropsychopharmacology. 2008;33(3):473-479.PubMedGoogle ScholarCrossref
31.
Bhattacharyya  S, Crippa  JA, Allen  P,  et al.  Induction of psychosis by Δ9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing.  Arch Gen Psychiatry. 2012;69(1):27-36.PubMedGoogle ScholarCrossref
32.
Juckel  G, Schlagenhauf  F, Koslowski  M,  et al.  Dysfunction of ventral striatal reward prediction in schizophrenia.  Neuroimage. 2006;29(2):409-416.PubMedGoogle ScholarCrossref
33.
Menon  M, Schmitz  TW, Anderson  AK,  et al.  Exploring the neural correlates of delusions of reference.  Biol Psychiatry. 2011;70(12):1127-1133.PubMedGoogle ScholarCrossref
34.
Sorg  C, Manoliu  A, Neufang  S,  et al.  Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia.  Schizophr Bull. 2013;39(2):387-395.PubMedGoogle ScholarCrossref
35.
Nejad  AB, Ebdrup  BH, Glenthøj  BY, Siebner  HR.  Brain connectivity studies in schizophrenia: unraveling the effects of antipsychotics.  Curr Neuropharmacol. 2012;10(3):219-230.PubMedGoogle ScholarCrossref
36.
Abbott  CC, Jaramillo  A, Wilcox  CE, Hamilton  DA.  Antipsychotic drug effects in schizophrenia: a review of longitudinal FMRI investigations and neural interpretations.  Curr Med Chem. 2013;20(3):428-437.PubMedGoogle Scholar
37.
Lahti  AC, Weiler  MA, Holcomb  HH, Tamminga  CA, Cropsey  KL.  Modulation of limbic circuitry predicts treatment response to antipsychotic medication: a functional imaging study in schizophrenia.  Neuropsychopharmacology. 2009;34(13):2675-2690.PubMedGoogle ScholarCrossref
38.
Lencz  T, Robinson  DG, Xu  K,  et al.  DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients.  Am J Psychiatry. 2006;163(3):529-531.PubMedGoogle ScholarCrossref
39.
Zhang  JP, Lencz  T, Malhotra  AK.  D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis.  Am J Psychiatry. 2010;167(7):763-772.PubMedGoogle ScholarCrossref
40.
Bertolino  A, Fazio  L, Caforio  G,  et al.  Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.  Brain. 2009;132(Pt 2):417-425.PubMedGoogle Scholar
41.
Konova  AB, Moeller  SJ, Tomasi  D, Volkow  ND, Goldstein  RZ.  Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction.  JAMA Psychiatry. 2013;70(8):857-868.PubMedGoogle ScholarCrossref
42.
Schmidt  A, Smieskova  R, Aston  J,  et al.  Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication.  JAMA Psychiatry. 2013;70(9):903-912.PubMedGoogle ScholarCrossref
Original Investigation
January 2015

Antipsychotic Treatment and Functional Connectivity of the Striatum in First-Episode Schizophrenia

Author Affiliations
  • 1Department of Psychiatry, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, New York
  • 2Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
  • 3Department of Psychiatry, Hofstra North Shore–Long Island Jewish School of Medicine, Hempstead, New York
  • 4School of Applied Sciences, Department of Communication Sciences and Disorders, University of Mississippi, University
JAMA Psychiatry. 2015;72(1):5-13. doi:10.1001/jamapsychiatry.2014.1734
Abstract

Importance  Previous evidence has implicated corticostriatal abnormalities in the pathophysiology of psychosis. Although the striatum is the primary target of all efficacious antipsychotics, the relationship between its functional connectivity and symptomatic reduction remains unknown.

Objective  To explore the longitudinal effect of treatment with second-generation antipsychotics on functional connectivity of the striatum during the resting state in patients experiencing a first episode of psychosis.

Design, Setting, and Participants  This prospective controlled study took place at a clinical research center and included 24 patients with first-episode psychosis and 24 healthy participants matched for age, sex, education, and handedness. Medications were administered in a double-blind randomized manner.

Interventions  Patients were scanned at baseline and after 12 weeks of treatment with either risperidone or aripiprazole. Their symptoms were evaluated with the Brief Psychiatric Rating Scale at baseline and follow-up. Healthy participants were scanned twice within a 12-week interval.

Main Outcomes and Measures  Functional connectivity of striatal regions was examined via functional magnetic resonance imaging using a seed-based approach. Changes in functional connectivity of these seeds were compared with reductions in ratings of psychotic symptoms.

Results  Patients had a median exposure of 1 day to antipsychotic medication prior to being scanned (mean [SD] = 4.5 [6.1]). Eleven patients were treated with aripiprazole and 13 patients were treated with risperidone. As psychosis improved, we observed an increase in functional connectivity between striatal seed regions and the anterior cingulate, dorsolateral prefrontal cortex, and limbic regions such as the hippocampus and anterior insula (P < .05, corrected for multiple comparisons). Conversely, a negative relationship was observed between reduction in psychosis and functional connectivity of striatal regions with structures within the parietal lobe (P < .05, corrected for multiple comparisons).

Conclusions and Relevance  Our results indicated that corticostriatal functional dysconnectivity in psychosis is a state-dependent phenomenon. Increased functional connectivity of the striatum with prefrontal and limbic regions may be a biomarker for improvement in symptoms associated with antipsychotic treatment.

×