Abnormal Ventral Temporal Cortical Activity During Face Discrimination Among Individuals With Autism and Asperger Syndrome | Autism Spectrum Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Cohen  DJVolkmar  FR Handbook of Autism and Pervasive Developmental Disorders. 2nd ed. New York, NY John Wiley & Sons Inc1997;
2.
Osterling  JDawson  G Early recognition of children with autism: a study of first birthday home videotapes.  J Autism Dev Disord. 1994;24247- 257Google ScholarCrossref
3.
Kanner  L Autistic disturbances of affective contact.  Nerv Child. 1943;2217- 250Google Scholar
4.
Kanwisher  NMcDermott  JChun  MM The fusiform face area: a module in human extrastriate cortex specialized for face perception.  J Neurosci. 1997;174302- 4311Google Scholar
5.
Farah  MJWilson  KDDrain  MTanaka  JN What is "special" about face perception?  Psychol Rev. 1998;105482- 498Google ScholarCrossref
6.
Morton  JJohnson  MH CONSPEC and CONLERN: a two-process theory of infant face recognition.  Psychol Rev. 1991;98164- 181Google ScholarCrossref
7.
Sackett  GP Monkeys reared in social isolation with pictures as visual input: evidence for an innate releasing mechanism.  Science. 1966;1541468- 1473Google ScholarCrossref
8.
Boucher  RPLewis  V Unfamilar face recognition in relatively able autistic children.  J Child Psychol Psychiatry. 1992;33843- 859Google ScholarCrossref
9.
Davies  SBishop  DManstead  ASTantam  D Face perception in children with autism and Asperger's syndrome.  J Child Psychol Psychiatry. 1994;351033- 1057Google ScholarCrossref
10.
Hobson  RPOuston  JLee  A What's in a face? the case of autism.  Br J Psychol. 1988;79441- 453Google ScholarCrossref
11.
Langdell  T Recognition of faces: an approach to the study of autism.  J Child Psychol Psychiatry. 1978;19255- 268Google ScholarCrossref
12.
Tantam  DMonaghan  LNicholson  HStirling  J Autistic children's ability to interpret faces: a research note.  J Child Psychol Psychiatry. 1989;30623- 630Google ScholarCrossref
13.
Hauck  MFein  DMaltby  NWaterhouse  LFeinstein  C Memory for faces in children with autism.  Child Neuropsychol. 1998;4187- 198Google ScholarCrossref
14.
Braverman  MFein  DLucci  DWaterhouse  L Affect comprehension in children with pervasive developmental disorders.  J Autism Dev Disord. 1989;19301- 316Google ScholarCrossref
15.
Volkmar  FRSparrow  SSRende  RCCohen  DJ Facial perception in autism.  J Child Psychol Psychiatry. 1989;30591- 598Google ScholarCrossref
16.
Valentine  T Upside-down faces: a review of the effect of inversion upon face recognition.  Br J Psychol. 1988;79471- 491Google ScholarCrossref
17.
Gauthier  ITarr  MJ Becoming a "Greeble" expert: exploring mechanisms for face recognition.  Vision Res. 1997;371673- 1681Google ScholarCrossref
18.
Gauthier  ITarr  MJAnderson  AWSkudlarski  PGore  JC Activation of the middle fusiform ‘face area' increases with expertise in recognizing novel objects.  Nat Neurosci. 1999;2568- 573Google ScholarCrossref
19.
Diamond  RCarey  S Why faces are and are not special: an effect of expertise.  J Exp Psychol. 1986;115107- 117Google ScholarCrossref
20.
Tarr  MJBulthoff  HH Image-based object recognition in man, monkey and machine.  Cognition. 1998;671- 20Google ScholarCrossref
21.
Haxby  JVUngerleider  LGClark  VPSchouten  JLHoffman  EAMartin  A The effect of face inversion on activity in human neural systems for face and object perception.  Neuron. 1999;22189- 199Google ScholarCrossref
22.
Dolan  RJFink  GRRolls  EBooth  MHolmes  AFrackowiak  RSFriston  KJ How the brain learns to see objects and faces in an impoverished context.  Nature. 1997;389596- 599Google ScholarCrossref
23.
McCarthy  GPuce  AGore  JCAllison  T Face-specific processing in the human fuisform gyrus.  J Cogn Neurosci. 1997;9605- 610Google ScholarCrossref
24.
Clark  VPKeil  KMaisog  JMCourtney  SUngerleider  LGHaxby  JV Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography.  Neuroimage. 1996;41- 15Google ScholarCrossref
25.
Haxby  JVHorowitz  BUngerleider  LGMaisog  JMPietrini  PGrady  CL The functional organization of the human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations.  J Neurosci. 1994;146336- 6353Google Scholar
26.
Puce  AAllison  TGore  JCMcCarthy  G Face-sensitive regions in human extrastriate cortex studied by functional MRI.  J Neurophysiol. 1995;741192- 1199Google Scholar
27.
Sergent  JOhta  SMacdonald  B Functional neuroanatomy of face and object processing.  Brain. 1992;11515- 36Google ScholarCrossref
28.
Gauthier  IAnderson  AWTarr  MJSkudlarski  PGore  JC Levels of categorization in visual recognition studied using functional magnetic resonance imaging.  Curr Biol. 1997;7645- 651Google ScholarCrossref
29.
Farah  M Patterns of co-occurrence among associative agnosias: implications for visual object representation.  Cogn Neuropsychol. 1991;81- 19Google ScholarCrossref
30.
Kanwisher  NWoods  RIacobnoi  MMazziotta  JC A locus in human extrastriate cortex for visual shape analysis.  J Cogn Neurosci. 1997;9133- 142Google ScholarCrossref
31.
Malach  RReppas  JBBenson  RRKwong  KKJiang  HKennedy  WALedden  PJBrady  TJRosen  BRTootell  RB Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.  Proc Natl Acad Sci U S A. 1995;928135- 8139Google ScholarCrossref
32.
Martin  AWiggs  CLUngerleider  LGHaxby  JV Neural correlates of category-specific knowledge.  Nature. 1996;379649- 652Google ScholarCrossref
33.
Schacter  DLReiman  EUecker  APolster  MRYun  LSCooper  LA Brain regions associated with retrieval of structurally coherent visual information.  Nature. 1995;376587- 590Google ScholarCrossref
34.
Mesulam  MM From sensation to cognition.  Brain. 1998;1211013- 1052Google ScholarCrossref
35.
Lord  CRutter  MLe Couteur  A Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.  J Autism Dev Disord. 1994;24659- 685Google ScholarCrossref
36.
Lord  CRutter  MDiLavore  PRisi  S Autism Diagnostic Observation Schedule (ADOS).  Los Angeles, Calif Western Psychological Services1999;
37.
World Health Organization, International Classification of Diseases, 10th Revision (ICD-10).  Geneva, Switzerland World Health Organization1992;
38.
Sparrow  SSBalla  DCicchetti  DV Vineland Adaptive Behavior Scales.  Circle Pines, Minn American Guidance Service1984;
39.
Wechsler  D Manual for the Wechsler Adult Intelligence Scale–Revised.  San Antonio, Tex Psychological Corp1981;
40.
Wechsler  D Manual for the Wechsler Intelligence Scale for Children. 3rd ed. San Antonio, Tex Psychological Corp1992;
41.
Sattler  JM Assessment of Children. 3rd ed. San Diego, Calif Jerome M. Sattler Publisher Inc1988;
42.
Klin  AVolkmar  FRSparrow  SSCicchetti  DVRourke  BP Validity and neuropsychological characterization of Asperger syndrome: convergence with nonverbal learning disabilities syndrome.  J Child Psychol Psychiatry. 1995;361127- 1140Google ScholarCrossref
43.
Ekman  PFriesen  WV Unmasking the Face: A Guide to Recognizing Emotions From Facial Clues.  Englewood Cliffs, NJ Prentice-Hall International Inc1975;
44.
Matsumoto  DEkman  P Commentary on "A New Series of Slides Depicting Facial Expressions of Affect" by Mazurski and Bond (1993).  Aust J Psychol. 1994;4658Google ScholarCrossref
45.
Friston  KJWilliams  SHoward  RFrackowiak  RSTurner  R Movement-related effects in fMRI time-series.  Magn Reson Med. 1996;35346- 355Google ScholarCrossref
46.
Constable  RTSkudlarski  PMencl  EPugh  KRFulbright  RKLacadie  CShaywitz  SEShaywitz  BA Quantifying and comparing region-of-interest activation patterns in functional brain MR imaging: methodological considerations.  Magn Reson Imaging. 1998;16289- 300Google ScholarCrossref
47.
Frith  U Cognitive explanations of autism.  Acta Paediatr Suppl. 1996;41663- 68Google ScholarCrossref
48.
Frith  U Autism: Explaining the Enigma.  Malden, Mass Blackwell Publishers1989;
49.
Mottron  LBellevile  S Study of perceptual analysis in high-level autistic subject with exceptional graphic abilities.  Brain Cogn. 1993;23279- 309Google ScholarCrossref
50.
Mottron  LMineau  SDecarie  JCJambaque  ILabrecque  RPepin  JPAroichane  M Visual agnosia with bilateral temporo-occipital brain lesions in a child with autistic disorder: a case study.  Dev Med Child Neurol. 1997;39699- 705Google ScholarCrossref
51.
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.  Washington, DC American Psychiatric Association1994;
52.
Fujita  ITanaka  KIto  MCheng  K Columns for visual features of objects in monkey inferotemporal cortex.  Nature. 1992;360343- 346Google ScholarCrossref
53.
Rolls  ETBaylis  CGHasselmo  MENalwa  V The effect of learning on the face selective responses in neurons in the cortex in the superior temporal sulcus of the monkey.  Exp Brain Res. 1989;76739- 759Google ScholarCrossref
54.
Gaffan  EAGaffan  DHarrison  S Disconnection of the amygdala from visual association cortex impairs visual-reward association learning in monkeys.  J Neurosci. 1988;83144- 3150Google Scholar
55.
Ono  TNishijo  HUwano  T Amygdala role in associative learning.  Prog Neurobiol. 1995;46401- 422Google ScholarCrossref
56.
Aggleton  JP The contribution of the amygdala to normal and abnormal emotional states.  Trends Neurosci. 1993;16328- 333Google ScholarCrossref
57.
Rosvold  HEMirsky  AFPribram  KH Influence of amygdalectomy on social behavior in monkeys.  J Comp Physiol Psychol. 1954;47173- 178Google ScholarCrossref
58.
Brothers  LRing  B Mesial temporal neurons in the macaque monkey with responses selective for aspects of social stimuli.  Behav Brain Res. 1993;5753- 61Google ScholarCrossref
59.
Kling  ASteklis  HD A neural substrate for affiliative behavior in nonhuman primates.  Brain Behav Evol. 1976;13216- 238Google ScholarCrossref
60.
Adolphs  RTranel  DDamasio  AR The human amygdala in social judgment.  Nature. 1998;393470- 474Google ScholarCrossref
61.
Breiter  HCEtcoff  NLWhalen  PJKennedy  WARauch  SLBuckner  RLStrauss  MMHyman  SERosen  BR Response and habituation of the human amygdala during visual processing of facial expression.  Neuron. 1996;17875- 887Google ScholarCrossref
62.
Fried  IMacDonald  KAWilson  CL Single neuron activity in human hippocampus and amygdala during recognition of faces and objects.  Neuron. 1997;18753- 765Google ScholarCrossref
63.
Bauman  MLKemper  TL Neuroanatomic observations of the brain in autism. Bauman  MLKemper  TLeds The Neurobiology of Autism Baltimore, Md Johns Hopkins University Press1995;119- 145Google Scholar
64.
Damasio  ARMaurer  RG An neurological model of childhood autism.  Arch Neurol. 1978;35777- 786Google ScholarCrossref
65.
Dawson  GMeltzoff  ANOsterling  JRinaldi  J Neuropsychological correlates of early symptoms of autism.  Child Dev. 1998;691276- 1285Google ScholarCrossref
66.
Bachevalier  J Medial temporal lobe structures and autism: a review of clinical and experimental findings.  Neuropsychologia. 1994;32627- 648Google ScholarCrossref
67.
Webster  MJUngerleider  LGBachlevalier  J Lesions of the inferior temporal area TE in infant monkeys alter cortico-amygdalar projections.  Neuroreport. 1991;2769- 772Google ScholarCrossref
68.
Löwel  SSinger  W Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity.  Science. 1992;255209- 212Google ScholarCrossref
69.
Saunders  RCKolachana  BSBachevalier  JWeinberger  DR Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine.  Nature. 1998;393169- 171Google ScholarCrossref
70.
Bertolino  ASaunders  RCMattay  VSBachevalier  JFrank  JAWeinberger  DR Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study.  Cereb Cortex. 1997;7740- 748Google ScholarCrossref
71.
Choa  LLMartin  ALalonde  FMUngerleider  LGHaxby  JV Faces, animals, and animals with obscured faces elicit similar fMRI activation in the ventral object vision pathway.  Presented as a poster at: the Fourth International Conference on Functional Mapping of the Human Brain June 10, 1998 Montreal, Quebec
72.
Aguirre  GKZarahn  ED'Esposito  M An area within human ventral cortex sensitive to "building" stimuli: evidence and implications.  Neuron. 1998;21373- 383Google ScholarCrossref
73.
Ojemann  JGAkbudak  ESnyder  AZMcKinstry  RCRaichle  MEConturo  TE Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts.  Neuroimage. 1997;6156- 167Google ScholarCrossref
Original Article
April 2000

Abnormal Ventral Temporal Cortical Activity During Face Discrimination Among Individuals With Autism and Asperger Syndrome

Author Affiliations

From the Child Study Center (Drs Schultz, Klin, Volkmar, and Cohen) and the Departments of Psychology (Drs Gauthier, Volkmar, and Cohen) and Diagnostic Radiology (Drs Anderson, Fulbright, Skudlarski, and Gore and Ms Lacadie), Yale University, New Haven, Conn. Dr Gauthier is now at Vanderbilt University Department of Psychology, Nashville, Tenn.

Arch Gen Psychiatry. 2000;57(4):331-340. doi:10.1001/archpsyc.57.4.331
Abstract

Background  Recognition of individual faces is an integral part of both interpersonal interactions and successful functioning within a social group. Therefore, it is of considerable interest that individuals with autism and related conditions have selective deficits in face recognition (sparing nonface object recognition).

Method  We used functional magnetic resonance imaging (fMRI) to study face and subordinate-level object perception in 14 high-functioning individuals with autism or Asperger syndrome (the autism group), in comparison with 2 groups of matched normal controls (normal control group 1 [NC1] and normal control group 2 [NC2]) (n=14 for each). Regions of interest (ROIs) were defined in NC1 and then applied in comparisons between NC2 and the autism group. Regions of interest were also defined in NC2 and then applied to comparisons between NC1 and the autism group as a replication study.

Results  In the first set of comparisons, we found significant task × group interactions for the size of activation in the right fusiform gyrus (FG) and right inferior temporal gyri (ITG). Post hoc analyses showed that during face (but not object) discrimination, the autism group had significantly greater activation than controls in the right ITG and less activation of the right FG. The replication study showed again that the autism group used the ITG significantly more for processing faces than the control groups, but for these analyses, the effect was now on the left side. Greater ITG activation was the pattern found in both control groups during object processing.

Conclusions  Individuals with autism spectrum disorders demonstrate a pattern of brain activity during face discrimination that is consistent with feature based strategies that are more typical of nonface object perception.

×