Gray and White Matter Brain Chemistry in Young Children With Autism | Acute Coronary Syndromes | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.185.54. Please contact the publisher to request reinstatement.
1.
Dawson  GMeltzoff  ANOsterling  JRinaldi  J Neuropsychological correlates of early symptoms of autism.  Child Dev 1998;691276- 1285PubMedGoogle ScholarCrossref
2.
Redcay  ECourchesne  E When is the brain enlarged in autism? a meta-analysis of all brain size reports.  Biol Psychiatry 2005;581- 9PubMedGoogle ScholarCrossref
3.
Courchesne  ERedcay  EKennedy  DP The autistic brain: birth through adulthood.  Curr Opin Neurol 2004;17489- 496PubMedGoogle ScholarCrossref
4.
Herbert  MRZiegler  DADeutsch  CKO'Brien  LMLange  NBakardjiev  AHodgson  JAdrien  KTSteele  SMakris  NKennedy  DHarris  GJCaviness  VS  Jr Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys.  Brain 2003;1261182- 1192PubMedGoogle ScholarCrossref
5.
Sparks  BFFriedman  SDShaw  DWAylward  EHEchelard  DArtru  AAMaravilla  KRGiedd  JNMunson  JDawson  GDager  SR Brain structural abnormalities in young children with autism spectrum disorder.  Neurology 2002;59184- 192PubMedGoogle ScholarCrossref
6.
Kanner  L Autistic disturbances of affective contact.  Nerv Child 1943;2217- 250PubMedGoogle Scholar
7.
Palmen  SJvan Engeland  HHof  PRSchmitz  C Neuropathological findings in autism.  Brain 2004;1272572- 2583PubMedGoogle ScholarCrossref
8.
Bauman  MLKemper  TL Neuroanatomic observations of the brain in autism: a review and future directions.  Int J Dev Neurosci 2005;23183- 187PubMedGoogle ScholarCrossref
9.
Vargas  DLNascimbene  CKrishnan  CZimmerman  AWPardo  CA Neuroglial activation and neuroinflammation in the brain of patients with autism.  Ann Neurol 2005;5767- 81Google ScholarCrossref
10.
Miles  JHTakahashi  TNBagby  SSahota  PKVaslow  DFWang  CHHillman  REFarmer  JE Essential vs complex autism: definition of fundamental prognostic subtypes.  Am J Med Genet A 2005;135171- 180PubMedGoogle ScholarCrossref
11.
Bailey  ALuthert  PDean  AHarding  BJanota  IMontgomery  MRutter  MLantos  P A clinicopathological study of autism.  Brain 1998;121889- 905PubMedGoogle ScholarCrossref
12.
Casanova  MFBuxhoeveden  DGomez  J Disruption in the inhibitory architecture of the cell minicolumn: implications for autism.  Neuroscientist 2003;9496- 507PubMedGoogle ScholarCrossref
13.
Ross  BMichaelis  T Clinical applications of magnetic resonance spectroscopy.  Magn Reson Q 1994;10191- 247PubMedGoogle Scholar
14.
Bluml  SSeymour  KJRoss  BD Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain.  Magn Reson Med 1999;42643- 654PubMedGoogle ScholarCrossref
15.
Birken  DLOldendorf  WH N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain.  Neurosci Biobehav Rev 1989;1323- 31PubMedGoogle ScholarCrossref
16.
Baslow  MH N-acetylaspartate in the vertebrate brain: metabolism and function.  Neurochem Res 2003;28941- 953PubMedGoogle ScholarCrossref
17.
Bluml  SMcComb  JGRoss  BD Differentiation between cortical atrophy and hydrocephalus using 1H MRS.  Magn Reson Med 1997;37395- 403PubMedGoogle ScholarCrossref
18.
Lee  JHArcinue  ERoss  BD Brief report: organic osmolytes in the brain of an infant with hypernatremia.  N Engl J Med 1994;331439- 442PubMedGoogle ScholarCrossref
19.
Manji  HKLenox  RH Signaling: cellular insights into the pathophysiology of bipolar disorder.  Biol Psychiatry 2000;48518- 530PubMedGoogle ScholarCrossref
20.
Gruetter  RNovotny  EJBoulware  SDMason  GFRothman  DLShulman  GIPrichard  JWShulman  RG Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose.  J Neurochem 1994;631377- 1385PubMedGoogle ScholarCrossref
21.
Dager  SRFriedman  SDParow  ADemopulos  CStoll  ALLyoo  IKDunner  DLRenshaw  PF Brain metabolic alterations in medication-free patients with bipolar disorder.  Arch Gen Psychiatry 2004;61450- 458PubMedGoogle ScholarCrossref
22.
Gadian  DG NMR and Its Applications to Living Systems. 2nd New York, NY Oxford University Press1996;
23.
Friedman  SDShaw  DWArtru  AARichards  TLGardner  JDawson  GPosse  SDager  SR Regional brain chemical alterations in young children with autism spectrum disorder.  Neurology 2003;60100- 107PubMedGoogle ScholarCrossref
24.
Hashimoto  TTayama  MMiyazaki  MYoneda  YYoshimoto  THarada  MMiyoshi  HTanouchi  MKuroda  Y Differences in brain metabolites between patients with autism and mental retardation as detected by in vivo localized proton magnetic resonance spectroscopy.  J Child Neurol 1997;1291- 96PubMedGoogle ScholarCrossref
25.
Otsuka  HHarada  MMori  KHisaoka  SNishitani  H Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study.  Neuroradiology 1999;41517- 519PubMedGoogle ScholarCrossref
26.
Mori  KHashimoto  THarada  MYoneda  YShimakawa  SFujii  EYamaue  TMiyazaki  MSaijo  TKuroda  Y Proton magnetic resonance spectroscopy of the autistic brain [in Japanese].  No To Hattatsu 2001;33329- 335PubMedGoogle Scholar
27.
Hisaoka  SHarada  MNishitani  HMori  K Regional magnetic resonance spectroscopy of the brain in autistic individuals.  Neuroradiology 2001;43496- 498PubMedGoogle ScholarCrossref
28.
Murphy  DGCritchley  HDSchmitz  NMcAlonan  GVan Amelsvoort  TRobertson  DDaly  ERowe  ARussell  ASimmons  AMurphy  KCHowlin  P Asperger syndrome: a proton magnetic resonance spectroscopy study of brain.  Arch Gen Psychiatry 2002;59885- 891PubMedGoogle ScholarCrossref
29.
Fayed  NModrego  PJ Comparative study of cerebral white matter in autism and attention-deficit/hyperactivity disorder by means of magnetic resonance spectroscopy.  Acad Radiol 2005;12566- 569PubMedGoogle ScholarCrossref
30.
Posse  SDager  SRRichards  TLYuan  COgg  RArtru  AAMuller-Gartner  HWHayes  C In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).  Magn Reson Med 1997;37858- 865PubMedGoogle ScholarCrossref
31.
Levitt  JGO'Neill  JBlanton  RESmalley  SFadale  DMcCracken  JTGuthrie  DToga  AWAlger  JR Proton magnetic resonance spectroscopic imaging of the brain in childhood autism.  Biol Psychiatry 2003;541355- 1366PubMedGoogle ScholarCrossref
32.
Doyle  TJBedell  BJNarayana  PA Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain.  Magn Reson Med 1995;33755- 759PubMedGoogle ScholarCrossref
33.
Pfefferbaum  AAdalsteinsson  ESpielman  DSullivan  EVLim  KO In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging.  Magn Reson Med 1999;41276- 284PubMedGoogle ScholarCrossref
34.
Lord  CRutter  MLe Couteur  A Autism Diagnostic Interview–Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.  J Autism Dev Disord 1994;24659- 685PubMedGoogle ScholarCrossref
35.
Lord  CRisi  SLambrecht  LCook  EH  JrLeventhal  BLDiLavore  PCPickles  ARutter  M The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism.  J Autism Dev Disord 2000;30205- 223PubMedGoogle ScholarCrossref
36.
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.  Washington, DC American Psychiatric Association1994;
37.
Mullen  E Mullen Scales of Early Learning: AGS Edition.  Circle Pines, Minn American Guidance Service1995;
38.
Sparrow  SSBalla  DACicchetti  DV Vineland Adaptive Behavior Scales: Interview Edition, Survey Form Manual.  Circle Pines, Minn American Guidance Service1984;
39.
Sled  JGZijdenbos  APEvans  AC A nonparametric method for automatic correction of intensity nonuniformity in MRI data.  IEEE Trans Med Imaging 1998;1787- 97PubMedGoogle ScholarCrossref
40.
Bouman  CShapiro  M A multiscale random field model for Bayesian image segmentation.  IEEE Trans Image Process 1994;3162- 177Google ScholarCrossref
41.
Provencher  SW Estimation of metabolite concentrations from localized in vivo proton NMR spectra.  Magn Reson Med 1993;30672- 679PubMedGoogle ScholarCrossref
42.
Chugani  DCSundram  BSBehen  MLee  MLMoore  GJ Evidence of altered energy metabolism in autistic children.  Prog Neuropsychopharmacol Biol Psychiatry 1999;23635- 641PubMedGoogle ScholarCrossref
43.
Artru  AA Propofol combined with halothane or with fentanyl/halothane does not alter the rate of CSF formation or resistance to reabsorption of CSF in rabbits.  J Neurosurg Anesthesiol 1993;5250- 257PubMedGoogle ScholarCrossref
44.
Gustafsson  L Comment on “Disruption in the inhibitory architecture of the cell minicolumn: implications for autism.”  Neuroscientist 2004;10189- 191PubMedGoogle ScholarCrossref
45.
Petroff  OAPleban  LASpencer  DD Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain.  Magn Reson Imaging 1995;131197- 1211PubMedGoogle ScholarCrossref
46.
Zhang  KSejnowski  TJ A universal scaling law between gray matter and white matter of cerebral cortex.  Proc Natl Acad Sci U S A 2000;975621- 5626PubMedGoogle ScholarCrossref
47.
Stolzenburg  JUReichenbach  ANeumann  M Size and density of glial and neuronal cells within the cerebral neocortex of various insectivorian species.  Glia 1989;278- 84PubMedGoogle ScholarCrossref
48.
Kugel  HRoth  BPillekamp  FKruger  KSchulte  Ovon Gontard  ABenz-Bohm  G Proton spectroscopic metabolite signal relaxation times in preterm infants: a prerequisite for quantitative spectroscopy in infant brain.  J Magn Reson Imaging 2003;17634- 640PubMedGoogle ScholarCrossref
49.
Dolznig  HGrebien  FSauer  TBeug  HMullner  EW Evidence for a size-sensing mechanism in animal cells.  Nat Cell Biol 2004;6899- 905PubMedGoogle ScholarCrossref
50.
Ullian  EMSapperstein  SKChristopherson  KSBarres  BA Control of synapse number by glia.  Science 2001;291657- 661PubMedGoogle ScholarCrossref
51.
Fatemi  SHHalt  AR Altered levels of Bcl2 and p53 proteins in parietal cortex reflect deranged apoptotic regulation in autism.  Synapse 2001;42281- 284PubMedGoogle ScholarCrossref
52.
Zhang  JChen  YBHardwick  JMMiller  MIPlachez  CRichards  LJYarowsky  Pvan Zijl  PMori  S Magnetic resonance diffusion tensor microimaging reveals a role for Bcl-x in brain development and homeostasis.  J Neurosci 2005;251881- 1888PubMedGoogle ScholarCrossref
53.
Glaze  DG Rett syndrome: of girls and mice: lessons for regression in autism.  Ment Retard Dev Disabil Res Rev 2004;10154- 158PubMedGoogle ScholarCrossref
Original Article
July 2006

Gray and White Matter Brain Chemistry in Young Children With Autism

Author Affiliations

Author Affiliations: Departments of Radiology (Drs Friedman, Shaw, and Dager and Ms Petropoulos), Anesthesiology (Dr Artru), Psychology (Dr Dawson), Psychiatry (Dr Dager), and Bioengineering (Dr Dager), University of Washington School of Medicine, Seattle.

Arch Gen Psychiatry. 2006;63(7):786-794. doi:10.1001/archpsyc.63.7.786
Abstract

Context  The brain pathophysiological abnormalities underlying autism remain unclear. Neuroimaging and histological studies suggest cellular abnormalities early in the course of the disease.

Objective  To measure the in vivo chemical profile of gray and white matter tissues in autism.

Design  Cross-sectional spectroscopic imaging study comparing 3- to 4-year-old children with autism spectrum disorder (ASD) with age-matched comparison groups of children with delayed development (DD) and typical development (TD).

Setting  The University of Washington Diagnostic Imaging Sciences Center, Seattle.

Participants  Forty-five 3- to 4-year-old children with ASD, 12 age-matched children with DD, and 10 age-matched children with TD.

Main Outcome Measures  Estimates of gray and white matter concentrations for choline-containing compounds (Cho), creatine plus phosphocreatine, N-acetylaspartate (NAA), and myo-inositol (mI). Transverse relaxation times for Cho, creatine plus phosphocreatine, and NAA expressed relative to control subjects with TD were examined to evaluate tissue compactness.

Results  The children with ASD demonstrated decreased gray matter concentrations of Cho (P<.001), creatine plus phosphocreatine (P = .02), NAA (P = .02), and mI (P = .008) compared with children with TD. Gray matter Cho transverse relaxation was also prolonged for the ASD sample compared with the TD group (P = .01). The children with ASD demonstrated significantly decreased levels of Cho (P = .04) and mI (P = .008) and trend-level NAA (P = .09) in gray matter compared with the DD group. For white matter, both children with ASD and children with DD showed a similar pattern of NAA and mI level decreases (for children with ASD vs children with TD: NAA, P = .03; mI, P = .04; for children with DD vs children with TD, NAA, P = .03; mI, P = .07). In several analyses, cerebral volume contributed significantly as a covariate.

Conclusions  Reduced gray matter chemical concentrations and altered Cho transverse relaxation, in a pattern distinct from that in children with DD, suggest decreased cellularity, or density, at this early time point in ASD. Possibly reflecting shared developmental features, white matter results were common to ASD and DD groups. The relationship between cerebral volume and neurochemistry at this early time point may indicate processes related to unit scaling.

×