[Skip to Navigation]
Sign In
Figure. 
State-transition Markov model diagram for the usual care arm. For the intervention arm, additional states were created to represent those with and without care management.

State-transition Markov model diagram for the usual care arm. For the intervention arm, additional states were created to represent those with and without care management.

Table 1. 
Parameter Estimates Governing the Markov Model
Parameter Estimates Governing the Markov Model
Table 2. 
Cost-effectiveness of Intervention vs Usual Care From the Societal Perspective
Cost-effectiveness of Intervention vs Usual Care From the Societal Perspective
Table 3. 
Average Lifetime Costs per Person Under Intervention vs Usual Care by Cost Component
Average Lifetime Costs per Person Under Intervention vs Usual Care by Cost Component
Table 4. 
Economic Consequences of the Intervention Relative to Usual Care From the Employer's Perspective*
Economic Consequences of the Intervention Relative to Usual Care From the Employer's Perspective*
Table 5. 
Employer Net Benefits From the Intervention vs Usual Care According to Employees' Wages and Their Influence on the Productivity of Coworkers
Employer Net Benefits From the Intervention vs Usual Care According to Employees' Wages and Their Influence on the Productivity of Coworkers
1.
Broadhead  WEBlazer  DGGeorge  LKTse  CK Depression, disability days, and days lost from work in a prospective epidemiologic survey.  JAMA 1990;2642524- 2528PubMedGoogle ScholarCrossref
2.
Wells  KBStewart  AHays  RDBurnam  MARogers  WDaniels  MBerry  SGreenfield  SWare  J The functioning and well-being of depressed patients: results from the Medical Outcomes Study.  JAMA 1989;262914- 919PubMedGoogle ScholarCrossref
3.
Murray  CJLLopez  AD The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability From Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020.  Cambridge, Mass Harvard University Press1996;
4.
Greenberg  PEKessler  RCNells  TLFinkelstein  SNBerndt  ER Depression in the workplace: an economic perspective. In:Feighner  JPBoyer  WFeds. Selective Serotonin Re-Uptake Inhibitors: Advances in Basic Research and Clinical Practice. New York John Wiley & Sons Inc1996;327- 363Google Scholar
5.
Kessler  RCFrank  RG The impact of psychiatric disorders on work loss days.  Psychol Med 1997;27861- 873PubMedGoogle ScholarCrossref
6.
Hays  RDWells  KBSherbourne  CDRogers  WSpritzer  K Functioning and well-being outcomes of patients with depression compared with chronic general medical illnesses.  Arch Gen Psychiatry 1995;5211- 19PubMedGoogle ScholarCrossref
7.
Von Korff  MOrmel  JKaton  WLin  EH Disability and depression among high utilizers of health care: a longitudinal analysis.  Arch Gen Psychiatry 1992;4991- 100PubMedGoogle ScholarCrossref
8.
Ormel  JVon Korff  MVan den Brink  WKaton  WBrilman  EOldehinkel  T Depression, anxiety, and social disability show synchrony of change in primary care patients.  Am J Public Health 1993;83385- 390PubMedGoogle ScholarCrossref
9.
Berndt  ERFinkelstein  SNGreenberg  PEHowland  RHKeith  ARush  AJRussell  JKeller  MB Workplace performance effects from chronic depression and its treatment.  J Health Econ 1998;17511- 535PubMedGoogle ScholarCrossref
10.
Mintz  JMintz  LIArruda  MJHwang  SS Treatments of depression and the functional capacity to work [published correction appears in Arch Gen Psychiatry. 1993;50:241].  Arch Gen Psychiatry 1992;49761- 768PubMedGoogle ScholarCrossref
11.
Mauskopf  JASimeon  GPMiles  MAWestlund  REDavidson  JR Functional status in depressed patients.  J Clin Psychiatry 1996;57588- 592PubMedGoogle ScholarCrossref
12.
Barge-Schaapveld  DQNicolson  NAvan der Hoop  RGDeVries  MW Changes in daily life experience associated with clinical improvement in depression.  J Affect Disord 1995;34139- 154PubMedGoogle ScholarCrossref
13.
Kocsis  JHFrances  AJVoss  CMason  BJMann  JJSweeney  J Imipramine and social-vocational adjustment in chronic depression.  Am J Psychiatry 1988;145997- 999PubMedGoogle Scholar
14.
Simon  GEKaton  WRutter  CVon Korff  MLin  ERobinson  PBush  TWalker  EALudman  ERusso  J Impact of improved depression treatment in primary care on daily functioning and disability.  Psychol Med 1998;28693- 701PubMedGoogle ScholarCrossref
15.
Mynors-Wallis  LMGath  DHLloyd-Thomas  ARTomlinson  D Randomized controlled trial comparing problem solving treatment with amitriptyline and placebo for major depression in primary care.  BMJ 1995;310441- 445PubMedGoogle ScholarCrossref
16.
Agosti  VStewart  JWQuitkin  FM Life satisfaction and psychosocial functioning in chronic depression.  J Affect Disord 1991;2335- 41PubMedGoogle ScholarCrossref
17.
Wang  PSBerglund  PKessler  RC Recent care of common mental disorders in the United States.  J Gen Intern Med 2000;15284- 292PubMedGoogle ScholarCrossref
18.
Wang  PSDemler  OKessler  RC The adequacy of treatment for serious mental illness in the United States.  Am J Public Health 2002;9292- 98PubMedGoogle ScholarCrossref
19.
Young  ASKlap  RSherbourne  CDWells  KB The quality of care for depressive and anxiety disorders in the United States.  Arch Gen Psychiatry 2001;5855- 61PubMedGoogle ScholarCrossref
20.
Wang  PSLane  MOlfson  MPincus  HAWells  KBKessler  RC Twelve-month use of mental health services in the United States: results from the National Comorbidity Survey Replication.  Arch Gen Psychiatry 2005;62629- 640PubMedGoogle ScholarCrossref
21.
Kessler  RCBerglund  PDemler  OJin  RKoretz  DMerikangas  KRRush  AJWalters  EEWang  PSNational Comorbidity Survey Replication, The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R).  JAMA 2003;2893095- 3105PubMedGoogle ScholarCrossref
22.
Katon  WVon Korff  MLin  EWalker  ESimon  GEBush  TRobinson  PRusso  J Collaborative management to achieve treatment guidelines: impact on depression in primary care.  JAMA 1995;2731026- 1031PubMedGoogle ScholarCrossref
23.
Katon  WRobinson  PVon Korff  MLin  EBush  TLudman  ESimon  GWalker  E A multifaceted intervention to improve treatment of depression in primary care.  Arch Gen Psychiatry 1996;53924- 932PubMedGoogle ScholarCrossref
24.
Schulberg  HCBlock  MRMadonia  MJScott  CPRodriguez  EImber  SDPerel  JLave  JHouck  PRCoulehan  JL Treating major depression in primary care practice.  Arch Gen Psychiatry 1996;53913- 919PubMedGoogle ScholarCrossref
25.
Katon  WVon Korff  MLin  ESimon  GWalker  EUnutzer  JBush  TRusso  JLudman  E Stepped collaborative care for primary care patients with persistent symptoms of depression.  Arch Gen Psychiatry 1999;561109- 1115PubMedGoogle ScholarCrossref
26.
Wells  KBSherbourne  CSchoenbaum  MDuan  NMeredith  LUnutzer  JMiranda  JCarney  MFRubenstein  LV Impact of disseminating quality improvement programs for depression in managed primary care.  JAMA 2000;283212- 220PubMedGoogle ScholarCrossref
27.
Simon  GEVon Korff  MRutter  CWagner  E Randomized trial of monitoring, feedback, and management of care by telephone to improve treatment of depression in primary care.  BMJ 2000;320550- 554PubMedGoogle ScholarCrossref
28.
Katzelnick  DJSimon  GEPearson  SDManning  WGHelstad  CPHenk  HJCole  SMLin  EHTaylor  LHKobak  KA Randomized trial of a depression management program in high utilizers of medical care.  Arch Fam Med 2000;9345- 351PubMedGoogle ScholarCrossref
29.
Unutzer  JKaton  WCallahan  CMWilliams  JW  JrHunkeler  EHarpole  LHoffing  MDella Penna  RDNoel  PHLin  EHArean  PAHegel  MTTang  LBelin  TROishi  SLangston  CIMPACT Investigators (Improving Mood-Promoting Access to Collaborative Treatment), Collaborative care management of late-life depression in the primary care setting.  JAMA 2002;2882836- 2845PubMedGoogle ScholarCrossref
30.
Simon  GELudman  EJTutty  SOperskalski  BVon Korff  M Telephone psychotherapy and telephone care management for primary care patients starting antidepressant treatment.  JAMA 2004;292935- 942PubMedGoogle ScholarCrossref
31.
Rost  KSmith  JLDickinson  M The effect of improving primary care depression management on employee absenteeism and productivity: a randomized trial.  Med Care 2004;421202- 1210PubMedGoogle ScholarCrossref
32.
Simon  GEKaton  WJVon Korff  MUnutzer  JLin  EHWalker  EABush  TRutter  CLudman  E Cost-effectiveness of a collaborative care program for primary care patients with persistent depression.  Am J Psychiatry 2001;1581638- 1644PubMedGoogle ScholarCrossref
33.
Lave  JRFrank  RGSchulberg  HCKamlet  MS Cost-effectiveness of treatments for major depression in primary care practice.  Arch Gen Psychiatry 1998;55645- 651PubMedGoogle ScholarCrossref
34.
Simon  GEManning  WGKatzelnick  DJPearson  SDHenk  HJHelstad  CS Cost-effectiveness of systematic depression treatment for high utilizers of general medical care.  Arch Gen Psychiatry 2001;58181- 187PubMedGoogle ScholarCrossref
35.
Schoenbaum  MUnutzer  JSherbourne  CDuan  NRubenstein  LVMiranda  JMeredith  LSCarney  MFWells  K Cost-effectiveness of practice-initiated quality improvement for depression.  JAMA 2001;2861325- 1330PubMedGoogle ScholarCrossref
36.
Von Korff  MKaton  WBush  TLin  EHSimon  GESaunders  KLudman  EWalker  EUnutzer  J Treatment costs, cost offset, and cost-effectiveness of collaborative management of depression.  Psychosom Med 1998;60143- 149PubMedGoogle Scholar
37.
Frank  RGHuskamp  HAPincus  HA Aligning incentives in the treatment of depression in primary care with evidence-based practice.  Psychiatr Serv 2003;54682- 687PubMedGoogle ScholarCrossref
38.
Pincus  HAHough  LHoutsinger  JKRollman  BLFrank  RG Emerging models of depression care.  Int J Methods Psychiatr Res 2003;1254- 63PubMedGoogle ScholarCrossref
39.
Wang  PSSimon  GKessler  RC The economic burden of depression and the cost-effectiveness of treatment.  Int J Methods Psychiatr Res 2003;1222- 33PubMedGoogle ScholarCrossref
40.
Gold  MRedSiegel  JEedRussell  LBedWeinstein  MCed Cost-effectiveness in Health and Medicine.  New York, NY Oxford University Press1996;
41.
Frank  RGMcGuire  TGNormand  SLTGoldman  HH The value of mental health care at the system level.  Health Aff (Millwood) 1999;1871- 88PubMedGoogle ScholarCrossref
42.
Goetzel  RZOzminkowski  RJSederer  LIMark  TL The business case for quality mental health services: why employers should care about the mental health and well-being of their employees.  J Occup Environ Med 2002;44320- 330PubMedGoogle ScholarCrossref
43.
Leatherman  SBerwick  DIles  DLewin  LSDavidoff  FNolan  TBisognano  M The business case for quality.  Health Aff (Millwood) 2003;22 ((2)) 17- 30PubMedGoogle ScholarCrossref
44.
 Current population survey, 2003 annual social and economic (ASEC) supplement. 2003; Bureau of Labor Statistics, US Department of Labor http://www.census.gov/apsd/techdoc/cps/cpsmar03.pdfAccessed October 1, 2004Google Scholar
45.
Sonnenberg  FABeck  JR Markov models in medical decision making: a practical guide.  Med Decis Making 1993;13322- 338PubMedGoogle ScholarCrossref
46.
Schoenbaum  MKelleher  KLave  JRGreen  SKeyser  DPincus  H Exploratory evidence on the market for effective depression care in Pittsburgh.  Psychiatr Serv 2004;55392- 395PubMedGoogle ScholarCrossref
47.
Katon  WJVon Korff  MLin  EHBSimon  GLudman  ERusso  JCiechanowski  PWalker  EBush  T The Pathways Study: a randomized trial of collaborative care in patients with diabetes and depression.  Arch Gen Psychiatry 2004;611042- 1049PubMedGoogle ScholarCrossref
48.
Williams  JW  JrKaton  WLin  EHBNoel  PHWorchel  JCornell  JHarpole  LFultz  BAHunkeler  EMika  VSUnutzer  JIMPACT Investigators, The effectiveness of depression care management on diabetes-related outcomes in older patients.  Ann Intern Med 2004;1401015- 1024PubMedGoogle Scholar
49.
Kessler  RCZhao  SKatz  SJKouzis  ACFrank  RGEdlund  MLeaf  P Past-year use of outpatient services for psychiatric problems in the National Comorbidity Survey.  Am J Psychiatry 1999;156115- 123PubMedGoogle Scholar
50.
Valenstein  MVijan  SZeber  JEBoehm  KButtar  A The cost-utility of screening for depression in primary care.  Ann Intern Med 2001;134345- 360PubMedGoogle Scholar
51.
Moscicki  EK Epidemiology of suicide. In:Jacobs  DGed. The Harvard Medical School Guide to Suicide Assessment and Intervention. San Francisco, Calif Josey-Bass1999;40- 51Google Scholar
52.
 Clinical Practice Guideline Number 5: Depression in Primary Care, 2: Treatment of Major Depression.  Rockville, Md Agency for Health Care Policy and Research, US Dept of Health and Human Services1993;AHCPR publication 93-0550
53.
Maj  MVeltro  FPirozzi  RLobrace  SMagliano  L Pattern of recurrence of illness after recovery from an episode of major depression: a prospective study.  Am J Psychiatry 1992;149795- 800PubMedGoogle Scholar
54.
Katon  WRutter  CLudman  EVon Korff  MLin  ESimon  GBush  TWalker  EUnutzer  J A randomized trial of relapse prevention of depression in primary care.  Arch Gen Psychiatry 2001;58241- 247PubMedGoogle ScholarCrossref
55.
Fallick  BCFleischman  CA The Importance of Employer-to-Employer Flows in the U.S. Labor Market.  Washington, DC Board of Governors of the Federal Reserve System2001;Finance and Economics Discussion Paper Series, No. 2001-18
56.
 Job openings and labor turnover survey (JOLTS). Bureau of Labor Statistics, US Department of Labor Web sitehttp://www.bls.gov/jlt/home.htmAccessed October 1, 2004
57.
 HCUPnet, healthcare cost and utilization project. Agency for Healthcare Research and Qualityhttp://hcupnet.ahrq.gov/Accessed October 1, 2004
58.
Ackerman  DLUnutzer  JGreenland  SGitlin  M Inpatient treatment of depression and associated hospital charges.  Pharmacoepidemiol Drug Saf 2002;11219- 227PubMedGoogle ScholarCrossref
59.
 Rate and audit review. Louisiana Department of Health and Hospitals Web sitehttp://dhhpublicsite.dhh.state.la.us/offices/page.asp?ID=111&Detail=3476Accessed October 1, 2004
60.
 Psychiatric hospitalization. American Psychiatric Association Web sitehttp://healthyminds.org/psychiatrichospitalization.cfmAccessed October 1, 2004
61.
Centers for Medicare & Medicaid Services, State drug utilization data. Centers for Medicare and Medicaid Serviceshttp://www.cms.hhs.gov/MedicaidDrugRebateProgram/SDUD/list.aspAccessed October 1, 2004
62.
Grembowski  DEMartin  DPatrick  DLDiehr  PKaton  WWilliams  BEngelberg  RNovak  LDickstein  DDeyo  RGoldberg  HI Managed care, access to mental health specialists, and outcomes among primary care patients with depressive symptoms.  J Gen Intern Med 2002;17258- 269PubMedGoogle ScholarCrossref
63.
Centers for Medicare & Medicaid Services, Physician fee schedule payment amount file national/carrier. 2004;http://www.cms.hhs.gov/PhysicianFeeSched/01_overview.aspAccessed October 1, 2004
64.
 The Wellmark Report: an analysis of prescription drug use in Iowa and South Dakota. http://www.wellmark.com/health_improvement/reports/downloads.htmAccessed October 1, 2004
65.
 Drug Topics Red Book. 108th Montvale, NJ Medical Economics2004;
66.
Wang  PSBeck  ABerglund  PLeutzinger  JAPronk  NRichling  DSchenk  TWSimon  GStang  PUstun  TBKessler  RC Chronic medical conditions and work performance in the health and work performance questionnaire calibration surveys.  J Occup Environ Med 2003;451303- 1311PubMedGoogle ScholarCrossref
67.
Wang  PSBeck  ALBerglund  PMcKenas  DKPronk  NPSimon  GEKessler  RC Effects of major depression on moment-in-time work performance.  Am J Psychiatry 2004;1611885- 1891PubMedGoogle ScholarCrossref
68.
Guico-Pabia  CJMurray  JFTeutsch  SMWertheimer  AIBerger  ML Indirect cost of ischemic heart disease to employers.  Am J Manag Care 2001;727- 34PubMedGoogle Scholar
69.
Barron  JBlack  DLowenstein  M Job matching and on-the-job training.  J Labor Econ 1989;71- 19Google ScholarCrossref
70.
Davidson  B Hiring an employee—how much does it cost? Workforce Management Web site2000;http://www.workforce.comAccessed October 1, 2004
71.
Lermusiaux  Y Economic consequences of reducing cost per hire. Taleo Web sitehttp://www.taleo.com/research/articles/strategic/economic-consequences-reducing-cost-per-hire-16.htmlAccessed October 1, 2004
72.
Fryback  DGDasbach  EJKlein  RKlein  BEDorn  NPeterson  KMartin  PA The Beaver Dam Health Outcomes Study: initial catalog of health-state quality factors.  Med Decis Making 1993;1389- 102PubMedGoogle ScholarCrossref
73.
Revicki  DAWood  M Patient-assigned health state utilities for depression-related outcomes.  J Affect Disord 1998;4825- 36PubMedGoogle ScholarCrossref
74.
Revicki  DABrown  REPalmer  WBakish  DRosser  WWAnton  SFFeeny  D Modelling the cost effectiveness of antidepressant treatment in primary care.  Pharmacoeconomics 1995;8524- 540PubMedGoogle ScholarCrossref
75.
Bennett  KJTorrance  GWBoyle  MHGuscott  RMoran  LA Development and testing of a utility measure for major, unipolar depression (McSad).  Qual Life Res 2000;9109- 120PubMedGoogle ScholarCrossref
76.
Weinstein  MCSiegel  JEGold  MRKamlet  MSRussell  LB Recommendations of the Panel on Cost-Effectiveness in Health and Medicine.  JAMA 1996;2761253- 1258PubMedGoogle ScholarCrossref
77.
Arias  E United States Life Tables, 2002.  Hyattsville, Md National Center for Health Statistics2004;
78.
Williams  JW  JrMulrow  CDChiquette  ENoel  PHAguilar  CCornell  J A systematic review of newer pharmacotherapies for depression in adults: evidence report summary.  Ann Intern Med 2000;132743- 756PubMedGoogle Scholar
79.
Lin  EHBKaton  WVon Korff  MRusso  JESimon  GEBush  TMRutter  CMWalker  EALudman  E Relapse of depression in primary care: rate and clinical predictors.  Arch Fam Med 1998;7443- 449PubMedGoogle ScholarCrossref
80.
Kessler  RCWang  P Screening measures for behavioral health assessment. In:Hyner  GCPeterson  KWTravis  JWDewey  JEFoerster  JJFramer  EMeds. SPM Handbook of Health Assessment Tools. Pittsburgh, Pa Society for Prospective Medicine and the Institute for Health and Productivity Management1999;33- 40Google Scholar
81.
Hewitt Associates, Health Promotion Initiatives/Managed Health Provided by Major US Employers in 1996.  Lincolnshire, Ill Benefit Surveys1997;
82.
 Consumer Price Index: medical care component. Bureau of Labor Statistics, US Department of Laborhttp://www.bls.gov/cpi/home.htmAccessed October 1, 2004
83.
Torrance  GW Measurement of health state utilities for economic appraisal.  J Health Econ 1986;51- 30PubMedGoogle ScholarCrossref
84.
Wells  KBBurnam  MARogers  WHays  RCamp  P The course of depression in adult outpatients: results from the Medical Outcomes Study.  Arch Gen Psychiatry 1992;49788- 794PubMedGoogle ScholarCrossref
85.
Simon  GE Long-term prognosis of depression in primary care.  Bull World Health Organ 2000;78439- 445PubMedGoogle Scholar
86.
Leopold  R A Year in the Life of a Million American Workers.  New York, NY MetLife Group Disability2003;
87.
Salkever  DSGoldman  HPurushothaman  MShinogle  J Disability management, employee health and fringe benefits, and long-term-disability claims for mental disorders: an empirical exploration.  Milbank Q 2000;7879- 113PubMedGoogle ScholarCrossref
88.
Bureau of Labor Statistics, Employer costs for employee compensation.  March2005;http://www.bls.gov/news.release/pdf/ecec.pdfAccessed September 15, 2005
89.
Nicholson  SPauly  MVPolsky  DSharda  CSzrek  HBerger  ML Measuring the effects of workloss on productivity with team production.  Cambridge, Mass National Bureau of Economic Research Inc2004;NBER Working Paper No. 10632
90.
Graham  JDCorso  PSMorris  JMSegui-Gomez  MWeinstein  MC Evaluating the cost-effectiveness of clinical and public health measures.  Annu Rev Public Health 1998;19125- 152PubMedGoogle ScholarCrossref
91.
National Committee for Quality Assurance, The NCQA quality dividend calculator. http://www.ncqacalculator.comAccessed October 1, 2004
92.
MacArthur Foundation Initiative on Depression and Primary Care at Dartmouth and Duke, Information for employers: depression calculator. http://www.depression-primarycare.org/organizations/employers/calculatorAccessed October 22, 2005
93.
 Productivity impact model: calculating the impact of depression in the workplace and the benefits of treatment, version 2.5. PhRMA Web sitehttp://www.depressioncalculator.comAccessed October 1, 2004
94.
Warner  KESmith  RJSmith  DGFries  BE Health and economic implications of a work-site smoking-cessation program: a simulation analysis.  J Occup Environ Med 1996;38981- 992PubMedGoogle ScholarCrossref
95.
Unutzer  JKaton  WJRusso  JSimon  GVon Korff  MLin  EWalker  ELudman  EBush  T Willingness to pay for depression treatment in primary care.  Psychiatr Serv 2003;54340- 345PubMedGoogle ScholarCrossref
96.
Ryder  R Implementation strategies and applications for health risk appraisals. In:Hyner  GCPeterson  KWTravis  JWDewey  JEFoerster  JJFramer  EMeds. SPM Handbook of Health Assessment Tools. Pittsburgh, Pa Society for Prospective Medicine and the Institute for Health and Productivity Management1999;179- 184Google Scholar
97.
Schoenbaum  MUnutzer  JMcCaffrey  DDuan  NSherbourne  CWells  KB The effects of primary care depression treatment on patients' clinical status and employment.  Health Serv Res 2002;371145- 1158PubMedGoogle ScholarCrossref
98.
Koopmanschap  MARutten  FFvan Ineveld  BMvan Roijen  L The friction cost method for measuring indirect costs of disease.  J Health Econ 1995;14171- 189PubMedGoogle ScholarCrossref
99.
Rost  KNutting  PSmith  JWerner  JDuan  N Improving depression outcomes in community primary care practice.  J Gen Intern Med 2001;16143- 149PubMedGoogle ScholarCrossref
100.
Bush  TRutter  CSimon  GVon Korff  MKaton  WJWalker  EALin  ELudman  E Who benefits from more structured depression treatment?  Int J Psychiatry Med 2004;34247- 258PubMedGoogle ScholarCrossref
101.
Wang  PSBeck  ALMcKenas  DKMeneades  LMPronk  NPSaylor  JSSimon  GEWalters  EEKessler  RC Effects of efforts to increase response rates on a workplace chronic condition screening survey.  Med Care 2002;40752- 760PubMedGoogle ScholarCrossref
102.
Sturm  R Economic grand rounds: the myth of medical cost offset.  Psychiatr Serv 2001;52738- 740PubMedGoogle ScholarCrossref
Original Article
December 2006

The Costs and Benefits of Enhanced Depression Care to Employers

Author Affiliations

Author Affiliations: Department of Psychiatry (Dr Wang) and Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine (Drs Wang and Avorn and Ms Patrick), Brigham and Women's Hospital, Boston, Mass; Department of Health Care Policy, Harvard Medical School, Boston (Drs Wang and Kessler); United Behavioral Health, San Francisco, Calif (Dr Azocar and Ms McCulloch); Center for Health Studies, Group Health Cooperative, Seattle, Wash (Drs Ludman and Simon); and National Institute of Mental Health, Bethesda, Md (Dr Wang).

Arch Gen Psychiatry. 2006;63(12):1345-1353. doi:10.1001/archpsyc.63.12.1345
Abstract

Context  Although outreach and enhanced treatment interventions improve depression outcomes, uptake has been poor in part because purchasers lack information on their return on investment.

Objective  To estimate the costs and benefits of enhanced depression care for workers from the societal and employer-purchaser perspectives.

Design  Cost-effectiveness and cost-benefit analyses using state-transition Markov models. Simulated movements between health states were based on probabilities drawn from the clinical literature.

Participants  Hypothetical cohort of 40-year-old workers.

Intervention  Enhanced depression care consisting of a depression screen and care management for those depressed vs usual care.

Main Outcome Measures  Our base-case cost-effectiveness analysis was from the societal perspective; costs and quality-adjusted life-years were used to compute the incremental cost-effectiveness of the intervention relative to usual care. A secondary cost-benefit analysis from the employer's perspective tracked monetary costs and monetary benefits accruing to employers during a 5-year time horizon.

Results  From the societal perspective, screening and depression care management for workers result in an incremental cost-effectiveness ratio of $19 976 per quality-adjusted life-year relative to usual care. These results are consistent with recent primary care effectiveness trials and within the range for medical interventions usually covered by employer-sponsored insurance. From the employer's perspective, enhanced depression care yields a net cumulative benefit of $2895 after 5 years. In 1-way and probabilistic sensitivity analyses, these findings were robust to a variety of assumptions.

Conclusion  If these results can be replicated in effectiveness trials directly assessing effects on work outcomes, they suggest that enhanced treatment quality programs for depression are cost-beneficial to purchasers.

Previous research has found that depression is associated with enormous societal burdens.1-3 Just the economic costs from depression are in the order of tens of billions of dollars each year in the United States, with the largest component deriving from lost work productivity.4,5

A growing body of evidence suggests that these economic burdens from depression, including those from impaired work performance, would respond to improvement in depressive symptomatology and currently available depression treatments.6-16 Despite this, the economic burdens from depression persist because of the widespread underuse and poor-quality use of otherwise efficacious and tolerable depression treatments.17-21

Primary care effectiveness trials in the past decade have shown that a variety of interventions consisting of enhanced treatment quality can improve depression outcomes and, in some cases, work performance relative to usual care.22-31 Economic analyses have also found that these primary care quality-improvement interventions are cost-efficient from a societal perspective, with cost-effectiveness ratios less than $50 000 per quality-adjusted life-year (QALY).32-36

Unfortunately, widespread uptake of these enhanced depression treatment programs has not occurred owing to various barriers.37,38 One of these barriers occurs at the level of the purchasers, who cannot predict their return on investment from purchasing enhanced depression care programs.39 Most earlier studies22-31 have been conducted in primary care and not necessarily in working populations, and few have assessed the effect of enhanced depression care on lost productivity. Furthermore, we are not aware of published cost-effectiveness analyses conducted specifically from the perspective of the employer. Finally, results from short-term trials may not shed light on the economic effects of interventions in medium-term time frames of relevance to employers. Without such information, purchasers will have difficulty knowing their true costs and benefits and will continue to hesitate at investing in enhanced depression care.

The aims of the present study were 2-fold. First, we estimated the cost-effectiveness from the societal perspective of a program of enhanced depression care specifically for workers that involved outreach and improved treatment quality.40 Second, we sought to follow a systems cost-effectiveness approach41 and also to conduct a cost-benefit analysis from the more narrow perspective of the employer-purchaser, explicitly accounting for effects on relevant work outcomes over a 5-year time horizon. Both types of data—whether enhanced depression care is a good use of society's resources, as well as the employers' return on investment from interventions—are necessary first steps in informing purchasers of the true value of good-quality treatment.42,43

Methods
Model

To evaluate the cost-effectiveness of a depression intervention relative to usual care in a cohort of 40-year-old employees (representing the median age of US workers44), we constructed a state-transition Markov model.45 The depression intervention consisted of a one-time workplace-based depression screen for all employees and care management for those with positive results for depression. Care management was assumed to be similar to telephonic programs using masters-level clinicians that were developed by Simon and colleagues.27,30 The generally lower intensity of this depression intervention and the greater feasibility of its implementation may make it more desirable to employers, who are sensitive to resource requirements when purchasing benefits.46 However, we also assumed lower rates of treatment initiation and treatment adequacy resulting from this intervention vs more intensive ones.47,48 Usual care depicted care-seeking and treatment patterns that would occur in the absence of depression screening or care management. Under both the intervention and usual care, treatment was defined in terms of visits to a primary care physician or a psychiatrist and pharmacotherapy with a selective serotonin reuptake inhibitor. Pharmacotherapies were used to define treatments because the care management trials used in this analysis (eg, the trial of Simon et al27) have reported initiation and adequacy rates for antidepressants but not for other modalities.

The model (Figure) was constructed using decision analysis software (Data TreeAge Pro; TreeAge, Williamstown, Mass) and included 6 disease states: never depressed; depressed, not in treatment; depressed, in treatment; recovered, in treatment; recovered, not in treatment, and dead. For the intervention arm, additional states were added for those with and without care management. An initial cohort of workers was distributed between states according to population-based estimates of the prevalence of depression, recovery from depression, and ongoing treatment. At the end of each 3-month cycle, subjects were allowed to move between alive states or to die according to probabilities drawn from the clinical literature.

Transition probabilities

Transition probabilities are presented in Table 1. Age-, sex-, and race-specific mortality rates were assigned to each state according to 2002 US life tables.77 All depression states were associated with a slightly increased mortality rate due to suicide.51 The initial prevalence of depression, lifetime history of depression, and use of treatments in usual care were all obtained from the National Comorbidity Survey49 and its recent replication.21

For workers assigned to intervention, we assumed that the sensitivity and specificity of a 1-time screen (on paper or Web-based for employees with Internet access) would be the same as in previous cost-effectiveness analyses of depression screening.50 We also assumed that individuals with positive screen results who agree to care management would be given a full-length confirmatory depression assessment during the care manager's first call.30 Probabilities of treatment initiation among untreated cases in response to care managers' outreach efforts were drawn from recent primary care effectiveness trials.26

Treatment was modeled as a mix of adequate and suboptimal treatment, to reflect the varying quality of treatment observed in typical practice.21,27 Recent primary care effectiveness trial results were used to estimate the extent to which efforts by a care manager increase treatment initiation and the proportion of patients receiving adequate treatment relative to usual care.27 Recovery rates and relapse rates while participants were receiving adequate, suboptimal, or no treatment were purposefully drawn whenever possible from trials that used randomization and intention-to-treat analyses.52,53,78,79 Rates of treatment persistence in care management and usual care were obtained from recent primary care effectiveness trials, and greater treatment persistence under care management was assumed to continue for 18 months after care management ceased (a conservative assumption given that the benefits of care management on work outcomes were assumed to end immediately after care management ceased).54

Costs

Costs are presented in Table 1. The cost of administering the screen was a weighted average of the costs of adding depression questions to existing paper-based health risk appraisals for the 70% of US companies that currently administer them and of implementing Web-based screens for the 30% of companies that do not.80,81 For nondepressed patients with positive screen results (ie, those with false-positive results), we included the cost of a care manager's first call to conduct confirmatory depression assessments. Care management costs were drawn from a recent primary care effectiveness trial.27

Hospitalization costs were based on probabilities of hospitalization for treated and untreated patients in the clinical literature.57-60 Prescription costs were based on average prescription costs in a managed care plan, as well as on Medicaid costs and average wholesale prices; suboptimal pharmacotherapy was assumed to cost $50 less than adequate treatment.61,64,65 Physician costs included 4 visits per cycle for the 30% of individuals receiving care from a psychiatrist and 2 visits per cycle for the remaining 70% receiving care from a primary care physician.49,62 Visit costs were obtained from the 2004 Medicare physician fee schedule.63 The costs of time in treatment included the hours spent in visits (ie, a half hour for primary care and 1 hour for psychiatrist visits) plus transit (ie, a half hour) multiplied by the average hourly wage. All costs were inflated using the medical care component of the consumer price index and are expressed in 2004 dollar values.82 By convention, productivity losses were captured in our societal perspective analyses through quality-of-life adjustments and were omitted from dollar costs to avoid double counting.40,76

Utilities

Utilities were obtained from published studies, and those derived from standard gamble methods were used whenever available.73-75,83 The utility for never being depressed was 0.88, consistent with data from the Beaver Dam Health Outcomes Study.72 In the base case, a utility of 0.63 was assigned to both untreated and treated depression. In sensitivity analyses, the relationship between treated and untreated depression was varied to allow for the dual possibilities that treatment either improves quality of life or diminishes it owing to side effects. We assumed the same utility for having recovered from depression as that for having never been depressed (ie, 0.88) and assigned a disutility of 0.04 to having recovered but continuing to receive treatment for prophylaxis of relapse.

Analyses
Societal Perspective Analysis

Our base-case analysis was a cost-effectiveness analysis from the societal perspective. In this analysis, workers were assigned to usual care or intervention and followed up until death. Costs and quality-adjusted life expectancies were calculated for both cohorts and used to compute the incremental cost-effectiveness of the intervention relative to usual care. Costs and QALYs were both discounted at 3%.40,76 To validate the model, model-derived projections of disease course and costs were compared with estimates published in the literature.27,84,85

Employer's Perspective Analysis

To conduct a secondary cost-benefit analysis solely from the employer's perspective, the employee cohort was maintained at a constant size by replacing those who left the company or died. Only monetary costs and monetary benefits accruing to current employees were tracked. This simulation was restricted to 5 years to be more relevant to employers' decision-making time frames. Costs of the intervention, depression treatments, and lost work time spent obtaining treatments (assumed to be 50% of all time spent in treatment) were estimated as described in the “Costs” subsection.

Productivity losses resulting from depression-related absenteeism and presenteeism (decreased productivity at work) were calculated as the product of the number of hours lost and the median hourly wage rates.66,67 Upon recovery, productivity losses were assumed to decrease to zero over the course of a year.5,9,10 A US Federal Reserve Board analysis55 was used to derive the rate of turnover due to employer-to-employer movement, which was conservatively assumed to be identical for depressed and nondepressed workers. The rate of turnover due to movement into unemployment for depressed patients was obtained from a recent primary care effectiveness trial.26 This study was also used to estimate the effect of the intervention vs usual care on reducing movement into unemployment during the first year; this benefit was conservatively assumed to end abruptly when care management ceased.26 The resulting job separation rates used in this study are consistent with current data on job turnover from the Bureau of Labor Statistics.56 Replacement costs associated with employee turnover were calculated as the sum of the costs of hiring and training a new employee.68-71 In the base case, we assumed that employers did not offer long-term disability benefits, consistent with the fact that only 38% of employees have access to long-term disability insurance; in sensitivity analyses, long-term disability costs were included for employees becoming disabled owing to depression.86,87

Sensitivity analyses

We conducted 1-way sensitivity analyses on all individual variables. Upper and lower bounds were estimated for parameters on the basis of 95% confidence intervals if available (minimum and maximum values across all confidence intervals if multiple existed); value ranges reported in the literature were also used, or expert opinion if no other source could be found. Sensitivity analyses on the discount rate were performed between 0% and 5%. We also conducted a probabilistic sensitivity analysis in which probability distributions were assigned to all variables using their base-case estimates and 95% confidence intervals (beta distributions for probabilities, log-normal distributions for costs and relative risks, and uniform distributions when the true functional form of the variable was not known). We performed 10 000 Monte Carlo simulations, selecting variable values on the basis of their distribution and calculating resulting costs and QALYs.

To examine whether results vary by workforce characteristics, we also recalculated employer costs and benefits as a function of occupation-specific wages88 and occupation-specific multipliers89 reflecting the influence that an employee's lost day of work has on the productivity of coworkers.

Results
Societal perspective base-case analysis

From the societal perspective, performing a 1-time employer-based depression screen and providing telephonic depression care management resulted in 18.785 discounted QALYs at a cost of $3669 (Table 2). Usual care resulted in 18.783 QALYs and cost $3629. The incremental gain was 0.002 QALYs and incremental costs were $39.90. (These appear smaller than in previous studies32-36 because only a small fraction of the intervention arm who were depressed received care management in our analysis, while entire intervention arms, all of whom were depressed, experienced care management in previous studies. We verified this in an analysis among exclusively depressed workers and found incremental gains [0.0192 QALYs] and costs [$564] that were comparable to those in previous studies.) The incremental cost-utility ratio of $19 976 was well within the range found in earlier analyses of primary care interventions.32-36 When effectiveness was measured in life-years without adjusting for quality of life, care management increased life expectancy from 21.9337 to 21.9343 life-years at an incremental cost of $64 847 per life-year. Table 3 presents incremental costs broken down by components; all component costs were higher under the intervention vs usual care, except for psychiatric hospitalization costs.

Employer's perspective base-case analysis

Table 4 presents results from the employer's perspective analysis by year, broken down by component costs and benefits. During the first year, the intervention cost employers $601 per 1000 employees vs usual care; this dollar amount results from enhanced depression care's increased direct treatment, intervention, and time-in-treatment costs. These costs are almost offset by increased productivity, reduced turnover, and lower psychiatric hospitalization costs. By the second year, the intervention has reduced the number of depressed employees relative to usual care, although a higher percentage of both depressed and recovered employees continue in treatment. As a result, workers given enhanced depression care continue to have higher treatment and time-in-treatment costs vs those in usual care. However, these costs are now more than exceeded by benefits of the intervention on absenteeism, presenteeism, and employee turnover, yielding a net savings to employers of $4631. In years 3 through 5, the intervention leads to modest net costs to employers relative to usual care. These net costs result in part from our conservative assumptions that the intervention's benefits on work outcomes end after care management ceases, while the increased use of treatments owing to care management persists. The intervention may also help companies retain people at risk of future episodes, who then have slightly higher costs than workers who would otherwise have replaced them. Over the course of 5 years, the intervention results in a cumulative savings to employers of $2895 per 1000 workers relative to usual care.

Sensitivity analyses

Based on ranges shown in Table 1, the most influential parameter in our societal perspective analysis was treatment cost. The incremental cost-effectiveness ratio ranged from $7600 per QALY for treatment consisting exclusively of care from primary care physicians with generic drugs to $38 000 per QALY for care exclusively by psychiatrists (as occurs in some behavioral carve-outs that use psychiatrists as first-line providers) with brand name drugs. Results were equally sensitive to whether the changes in treatment costs were from pharmacotherapy or physician visits. The cost-effectiveness ratio was also sensitive to assumptions concerning the utility associated with depression (ranging from $9500 to $21 700 per QALY), disutility associated with depression treatments ($10 700-$23 500 per QALY), and suicide rate ($9500-$21 700 per QALY). Results of our probabilistic sensitivity analysis indicated that the incremental cost-effectiveness ratio for the intervention was between $9227 per QALY and $48 978 per QALY 95% of the time. It exceeded $50 000 per QALY for only 2.3% of the simulations.

Our employer's perspective analysis results were also sensitive to the cost of treatment. Changing treatment to all generic pharmacotherapies delivered by primary care physicians increased intervention-related savings to $17 per employee. On the other hand, greater use of psychiatrists and/or branded drugs to the point that 3-month direct treatment costs exceed $442 per patient made the intervention more costly than usual care. The intervention also ceased to be cost-saving if screening costs exceeded $3.15 (more than 10 times our base-case estimate) or if employees spent more than 4 hours of work time per cycle being treated.

Employer characteristics also played a role in the net benefits of the intervention. Increasing worker replacement costs to $50 000 per employee (consistent with estimates of hiring costs equaling annual wages) increased net savings to $32 per employee. When hiring costs fell below $3570 per employee, the intervention was no longer cost-saving. Similarly, savings were sensitive to the magnitude of reduced productivity experienced by depressed employees and the degree to which it was recoverable. Treatment effectiveness—both in increasing recovery rates and in preventing relapse—was an important factor; for example, decreasing the 3-month recovery rate on suboptimal treatment to below 25% or increasing the relapse rate to 40% resulted in intervention costs exceeding benefits.

Finally, employer's net benefits, as a function of workers' wages and their influence on the productivity of coworkers, are presented in Table 5. As shown, enhanced depression care interventions have the most net benefit for employees with high incomes who have a greater influence on the productivity of their coworkers.

Comment

Our societal perspective analyses suggest that a program of enhanced depression care for workers, consisting of a 1-time workplace depression screen plus telephonic care management for depressed employees, yields gains in quality-adjusted life expectancy at a cost in the range seen for commonly accepted medical interventions covered by employer-sponsored insurance.90 These results are consistent with previous cost-effectiveness analyses of primary care depression interventions (which have yielded cost-effectiveness ratios between $9478 and $39 128 per QALY),32-36 providing some reassurance regarding the validity of the assumptions and modeling approach in this study of workers. These results suggest that, like primary care depression interventions, enhanced depression care for workers appears to be a good investment of society's resources.

However, to an employer deciding whether to add such an intervention to existing health benefits, what may be of additional importance are the economic costs and benefits of the intervention specifically from the purchaser's perspective.42,43 These costs and benefits are likely to be important issues in contract negotiations between employers' benefits departments and health plans; some health plans and other groups have already begun to produce “calculators” to help estimate employers' benefits for purchasing enhanced care programs and other interventions.91-93 Unfortunately, few formal cost-effectiveness analyses in health care have been published that explicitly include an analysis from the employer's perspective.94

Our employer's perspective analyses show results that may seem counterintuitive at first—namely, that a screening and care management intervention designed to increase the use and intensity of treatment for depression may actually save employers money. However, as our results suggest, the expected higher direct treatment costs are more than offset by savings from reduced absenteeism, presenteeism, and employee turnover costs. While the bulk of the savings did not occur immediately, they were fully realized well within our employer analyses' 5-year time horizon. This latter finding is especially relevant for companies with high worker mobility. It implies that potential savings can be accrued within realistic time frames even in the presence of employee turnover.

It is worth keeping in mind that the magnitude of benefits for enhanced depression care observed in our employer analyses underestimates the total benefits from the societal perspective. This is because analyses from just the employer's perspective miss important improvements beyond increased productivity and job retention, such as positive effects on nonlabor outcomes of workers (eg, diminished suffering, increased marital stability, and decreased needs for caregiver time) and employees' contributions outside the workplace.32 Although alternative methods, such as those based on how much individuals would pay to avoid depression (ie, a “willingness to pay” approach95), can help account for any economic burdens in excess of labor outcomes in employer analyses, such approaches are difficult to implement.

The fact that our results were sensitive to estimates of treatment costs is important in light of recent and upcoming patent expirations on selective serotonin reuptake inhibitors. Increasing availability of generic antidepressants, growing use of primary care for mental health services, and greater application of brief or time-limited psychotherapies could all drive treatment costs lower in the future. Likewise, advances in Web-based, e-mail, and interactive voice-recognition technologies may help decrease the costs of depression screening programs.96 Because our results were sensitive to employee replacement costs, it is also worth noting that a rough assumption used by many human resources personnel—that hiring costs approximate a worker's annual wages—is close to our upper bound (ie, $50 000 per employee) used in sensitivity analyses.69-71

Our findings, particularly from the employer's perspective, have several potential limitations. Effectiveness trials directly measuring the effects of enhanced depression care on pertinent work outcomes are starting to be performed.31,97 However, to base our model inputs on trials that use randomization and intention-to-treat analyses, we indirectly estimated intervention consequences through their effects on depression and then linked these with known relationships between depression reduction and improved work outcomes.9,10 Well-established methods for valuing productivity losses and turnover from the employer's perspective were also lacking. For example, our simple transformation of absenteeism and presenteeism to salary-equivalent human capital dollar values may overestimate costs to employers (eg, as might happen if unperformed work during an absence is simply made up when an employee returns).98 However, we believe that true burdens on employers were underestimated because we did not take into account other costs, such as those for hiring temporary workers or paying coworkers overtime when an employee leaves, and the adverse influence of an employee's absence on coworkers' productivity.89 Indeed, our occupation-specific sensitivity analyses taking into account the influence on coworkers' productivity show that such costs, not currently in our base-case estimates, can be very large.89 Nevertheless, uncertainty in these and all model inputs remains a potential study limitation.

The generalizability of earlier primary care effectiveness trials to workers is unclear. One threat is that workers may have less severe depression. Interestingly, one primary care study found comparable numbers of baseline depression criteria in all participants vs the subgroup of workers31,99; depression severity also may not be related to whether one benefits from care management.26,100 A second threat is that treatment initiation and adequacy may be lower in working vs primary care populations. Again, one primary care study found somewhat higher antidepressant initiation, duration, and counseling rates at 24 months in workers vs all participants.31,99 A third threat would occur if workers participating in health risk appraisal screenings have a lower prevalence, severity, or impairment from depression than workers not participating. In a previous study, we found that workers initially participating in health risk appraisal screenings have levels of depression, work impairments, and associations between depression and work impairments comparable to those experienced by initial nonrespondents participating only after more intensive recruitment and financial incentives.101 Despite such reassurances, empirical data from trials conducted specifically among workers remain imperative.

Results from the employer's perspective tend to disvalue interventions for traditionally disadvantaged groups that are not in the workforce (eg, the elderly and disabled). As seen in our occupation-specific sensitivity analyses, low-wage and more solitary workers are also undervalued. Both of these potential limitations can lead to suboptimal and even unethical resource allocation decisions relative to the societal perspective.40 We tried to guard against this possibility by explicitly conducting a societal cost-effectiveness analysis together with our employer cost-benefit analysis; their joint results provide some reassurance that enhanced depression care for workers not only makes economic sense for employers but also is a good use of societal resources. Finally, there is an inherent danger in focusing on the return on investment to employers of enhanced depression care in that this may inadvertently hold the treatment of depression to a higher standard than treatment for other disorders.32,102

With these limitations in mind, results from this study suggest that enhanced depression care for workers is cost-beneficial from both the employer's and societal perspectives. If replicated in upcoming effectiveness trials that directly assess intervention effects on work outcomes, these findings suggest that it may be in society's and purchasers' interests to more widely disseminate successful programs of outreach and improved treatment quality for depression.39

Correspondence: Philip S. Wang, MD, DrPH, National Institute of Mental Health, 6001 Executive Blvd, Room 7151 MSC9629, Bethesda, MD 20892 (wangphi@mail.nih.gov).

Submitted for Publication: April 25, 2005; final revision received November 14, 2005; accepted March 15, 2006.

Financial Disclosure: Dr Simon has received research grants from Organon and Eli Lilly and Company.

Funding/Support: This study was supported by grant R01 MH61941 from the National Institute of Mental Health (Dr Wang) and grant 048123 from the Robert Wood Johnson Foundation (Dr Wang).

References
1.
Broadhead  WEBlazer  DGGeorge  LKTse  CK Depression, disability days, and days lost from work in a prospective epidemiologic survey.  JAMA 1990;2642524- 2528PubMedGoogle ScholarCrossref
2.
Wells  KBStewart  AHays  RDBurnam  MARogers  WDaniels  MBerry  SGreenfield  SWare  J The functioning and well-being of depressed patients: results from the Medical Outcomes Study.  JAMA 1989;262914- 919PubMedGoogle ScholarCrossref
3.
Murray  CJLLopez  AD The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability From Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020.  Cambridge, Mass Harvard University Press1996;
4.
Greenberg  PEKessler  RCNells  TLFinkelstein  SNBerndt  ER Depression in the workplace: an economic perspective. In:Feighner  JPBoyer  WFeds. Selective Serotonin Re-Uptake Inhibitors: Advances in Basic Research and Clinical Practice. New York John Wiley & Sons Inc1996;327- 363Google Scholar
5.
Kessler  RCFrank  RG The impact of psychiatric disorders on work loss days.  Psychol Med 1997;27861- 873PubMedGoogle ScholarCrossref
6.
Hays  RDWells  KBSherbourne  CDRogers  WSpritzer  K Functioning and well-being outcomes of patients with depression compared with chronic general medical illnesses.  Arch Gen Psychiatry 1995;5211- 19PubMedGoogle ScholarCrossref
7.
Von Korff  MOrmel  JKaton  WLin  EH Disability and depression among high utilizers of health care: a longitudinal analysis.  Arch Gen Psychiatry 1992;4991- 100PubMedGoogle ScholarCrossref
8.
Ormel  JVon Korff  MVan den Brink  WKaton  WBrilman  EOldehinkel  T Depression, anxiety, and social disability show synchrony of change in primary care patients.  Am J Public Health 1993;83385- 390PubMedGoogle ScholarCrossref
9.
Berndt  ERFinkelstein  SNGreenberg  PEHowland  RHKeith  ARush  AJRussell  JKeller  MB Workplace performance effects from chronic depression and its treatment.  J Health Econ 1998;17511- 535PubMedGoogle ScholarCrossref
10.
Mintz  JMintz  LIArruda  MJHwang  SS Treatments of depression and the functional capacity to work [published correction appears in Arch Gen Psychiatry. 1993;50:241].  Arch Gen Psychiatry 1992;49761- 768PubMedGoogle ScholarCrossref
11.
Mauskopf  JASimeon  GPMiles  MAWestlund  REDavidson  JR Functional status in depressed patients.  J Clin Psychiatry 1996;57588- 592PubMedGoogle ScholarCrossref
12.
Barge-Schaapveld  DQNicolson  NAvan der Hoop  RGDeVries  MW Changes in daily life experience associated with clinical improvement in depression.  J Affect Disord 1995;34139- 154PubMedGoogle ScholarCrossref
13.
Kocsis  JHFrances  AJVoss  CMason  BJMann  JJSweeney  J Imipramine and social-vocational adjustment in chronic depression.  Am J Psychiatry 1988;145997- 999PubMedGoogle Scholar
14.
Simon  GEKaton  WRutter  CVon Korff  MLin  ERobinson  PBush  TWalker  EALudman  ERusso  J Impact of improved depression treatment in primary care on daily functioning and disability.  Psychol Med 1998;28693- 701PubMedGoogle ScholarCrossref
15.
Mynors-Wallis  LMGath  DHLloyd-Thomas  ARTomlinson  D Randomized controlled trial comparing problem solving treatment with amitriptyline and placebo for major depression in primary care.  BMJ 1995;310441- 445PubMedGoogle ScholarCrossref
16.
Agosti  VStewart  JWQuitkin  FM Life satisfaction and psychosocial functioning in chronic depression.  J Affect Disord 1991;2335- 41PubMedGoogle ScholarCrossref
17.
Wang  PSBerglund  PKessler  RC Recent care of common mental disorders in the United States.  J Gen Intern Med 2000;15284- 292PubMedGoogle ScholarCrossref
18.
Wang  PSDemler  OKessler  RC The adequacy of treatment for serious mental illness in the United States.  Am J Public Health 2002;9292- 98PubMedGoogle ScholarCrossref
19.
Young  ASKlap  RSherbourne  CDWells  KB The quality of care for depressive and anxiety disorders in the United States.  Arch Gen Psychiatry 2001;5855- 61PubMedGoogle ScholarCrossref
20.
Wang  PSLane  MOlfson  MPincus  HAWells  KBKessler  RC Twelve-month use of mental health services in the United States: results from the National Comorbidity Survey Replication.  Arch Gen Psychiatry 2005;62629- 640PubMedGoogle ScholarCrossref
21.
Kessler  RCBerglund  PDemler  OJin  RKoretz  DMerikangas  KRRush  AJWalters  EEWang  PSNational Comorbidity Survey Replication, The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R).  JAMA 2003;2893095- 3105PubMedGoogle ScholarCrossref
22.
Katon  WVon Korff  MLin  EWalker  ESimon  GEBush  TRobinson  PRusso  J Collaborative management to achieve treatment guidelines: impact on depression in primary care.  JAMA 1995;2731026- 1031PubMedGoogle ScholarCrossref
23.
Katon  WRobinson  PVon Korff  MLin  EBush  TLudman  ESimon  GWalker  E A multifaceted intervention to improve treatment of depression in primary care.  Arch Gen Psychiatry 1996;53924- 932PubMedGoogle ScholarCrossref
24.
Schulberg  HCBlock  MRMadonia  MJScott  CPRodriguez  EImber  SDPerel  JLave  JHouck  PRCoulehan  JL Treating major depression in primary care practice.  Arch Gen Psychiatry 1996;53913- 919PubMedGoogle ScholarCrossref
25.
Katon  WVon Korff  MLin  ESimon  GWalker  EUnutzer  JBush  TRusso  JLudman  E Stepped collaborative care for primary care patients with persistent symptoms of depression.  Arch Gen Psychiatry 1999;561109- 1115PubMedGoogle ScholarCrossref
26.
Wells  KBSherbourne  CSchoenbaum  MDuan  NMeredith  LUnutzer  JMiranda  JCarney  MFRubenstein  LV Impact of disseminating quality improvement programs for depression in managed primary care.  JAMA 2000;283212- 220PubMedGoogle ScholarCrossref
27.
Simon  GEVon Korff  MRutter  CWagner  E Randomized trial of monitoring, feedback, and management of care by telephone to improve treatment of depression in primary care.  BMJ 2000;320550- 554PubMedGoogle ScholarCrossref
28.
Katzelnick  DJSimon  GEPearson  SDManning  WGHelstad  CPHenk  HJCole  SMLin  EHTaylor  LHKobak  KA Randomized trial of a depression management program in high utilizers of medical care.  Arch Fam Med 2000;9345- 351PubMedGoogle ScholarCrossref
29.
Unutzer  JKaton  WCallahan  CMWilliams  JW  JrHunkeler  EHarpole  LHoffing  MDella Penna  RDNoel  PHLin  EHArean  PAHegel  MTTang  LBelin  TROishi  SLangston  CIMPACT Investigators (Improving Mood-Promoting Access to Collaborative Treatment), Collaborative care management of late-life depression in the primary care setting.  JAMA 2002;2882836- 2845PubMedGoogle ScholarCrossref
30.
Simon  GELudman  EJTutty  SOperskalski  BVon Korff  M Telephone psychotherapy and telephone care management for primary care patients starting antidepressant treatment.  JAMA 2004;292935- 942PubMedGoogle ScholarCrossref
31.
Rost  KSmith  JLDickinson  M The effect of improving primary care depression management on employee absenteeism and productivity: a randomized trial.  Med Care 2004;421202- 1210PubMedGoogle ScholarCrossref
32.
Simon  GEKaton  WJVon Korff  MUnutzer  JLin  EHWalker  EABush  TRutter  CLudman  E Cost-effectiveness of a collaborative care program for primary care patients with persistent depression.  Am J Psychiatry 2001;1581638- 1644PubMedGoogle ScholarCrossref
33.
Lave  JRFrank  RGSchulberg  HCKamlet  MS Cost-effectiveness of treatments for major depression in primary care practice.  Arch Gen Psychiatry 1998;55645- 651PubMedGoogle ScholarCrossref
34.
Simon  GEManning  WGKatzelnick  DJPearson  SDHenk  HJHelstad  CS Cost-effectiveness of systematic depression treatment for high utilizers of general medical care.  Arch Gen Psychiatry 2001;58181- 187PubMedGoogle ScholarCrossref
35.
Schoenbaum  MUnutzer  JSherbourne  CDuan  NRubenstein  LVMiranda  JMeredith  LSCarney  MFWells  K Cost-effectiveness of practice-initiated quality improvement for depression.  JAMA 2001;2861325- 1330PubMedGoogle ScholarCrossref
36.
Von Korff  MKaton  WBush  TLin  EHSimon  GESaunders  KLudman  EWalker  EUnutzer  J Treatment costs, cost offset, and cost-effectiveness of collaborative management of depression.  Psychosom Med 1998;60143- 149PubMedGoogle Scholar
37.
Frank  RGHuskamp  HAPincus  HA Aligning incentives in the treatment of depression in primary care with evidence-based practice.  Psychiatr Serv 2003;54682- 687PubMedGoogle ScholarCrossref
38.
Pincus  HAHough  LHoutsinger  JKRollman  BLFrank  RG Emerging models of depression care.  Int J Methods Psychiatr Res 2003;1254- 63PubMedGoogle ScholarCrossref
39.
Wang  PSSimon  GKessler  RC The economic burden of depression and the cost-effectiveness of treatment.  Int J Methods Psychiatr Res 2003;1222- 33PubMedGoogle ScholarCrossref
40.
Gold  MRedSiegel  JEedRussell  LBedWeinstein  MCed Cost-effectiveness in Health and Medicine.  New York, NY Oxford University Press1996;
41.
Frank  RGMcGuire  TGNormand  SLTGoldman  HH The value of mental health care at the system level.  Health Aff (Millwood) 1999;1871- 88PubMedGoogle ScholarCrossref
42.
Goetzel  RZOzminkowski  RJSederer  LIMark  TL The business case for quality mental health services: why employers should care about the mental health and well-being of their employees.  J Occup Environ Med 2002;44320- 330PubMedGoogle ScholarCrossref
43.
Leatherman  SBerwick  DIles  DLewin  LSDavidoff  FNolan  TBisognano  M The business case for quality.  Health Aff (Millwood) 2003;22 ((2)) 17- 30PubMedGoogle ScholarCrossref
44.
 Current population survey, 2003 annual social and economic (ASEC) supplement. 2003; Bureau of Labor Statistics, US Department of Labor http://www.census.gov/apsd/techdoc/cps/cpsmar03.pdfAccessed October 1, 2004Google Scholar
45.
Sonnenberg  FABeck  JR Markov models in medical decision making: a practical guide.  Med Decis Making 1993;13322- 338PubMedGoogle ScholarCrossref
46.
Schoenbaum  MKelleher  KLave  JRGreen  SKeyser  DPincus  H Exploratory evidence on the market for effective depression care in Pittsburgh.  Psychiatr Serv 2004;55392- 395PubMedGoogle ScholarCrossref
47.
Katon  WJVon Korff  MLin  EHBSimon  GLudman  ERusso  JCiechanowski  PWalker  EBush  T The Pathways Study: a randomized trial of collaborative care in patients with diabetes and depression.  Arch Gen Psychiatry 2004;611042- 1049PubMedGoogle ScholarCrossref
48.
Williams  JW  JrKaton  WLin  EHBNoel  PHWorchel  JCornell  JHarpole  LFultz  BAHunkeler  EMika  VSUnutzer  JIMPACT Investigators, The effectiveness of depression care management on diabetes-related outcomes in older patients.  Ann Intern Med 2004;1401015- 1024PubMedGoogle Scholar
49.
Kessler  RCZhao  SKatz  SJKouzis  ACFrank  RGEdlund  MLeaf  P Past-year use of outpatient services for psychiatric problems in the National Comorbidity Survey.  Am J Psychiatry 1999;156115- 123PubMedGoogle Scholar
50.
Valenstein  MVijan  SZeber  JEBoehm  KButtar  A The cost-utility of screening for depression in primary care.  Ann Intern Med 2001;134345- 360PubMedGoogle Scholar
51.
Moscicki  EK Epidemiology of suicide. In:Jacobs  DGed. The Harvard Medical School Guide to Suicide Assessment and Intervention. San Francisco, Calif Josey-Bass1999;40- 51Google Scholar
52.
 Clinical Practice Guideline Number 5: Depression in Primary Care, 2: Treatment of Major Depression.  Rockville, Md Agency for Health Care Policy and Research, US Dept of Health and Human Services1993;AHCPR publication 93-0550
53.
Maj  MVeltro  FPirozzi  RLobrace  SMagliano  L Pattern of recurrence of illness after recovery from an episode of major depression: a prospective study.  Am J Psychiatry 1992;149795- 800PubMedGoogle Scholar
54.
Katon  WRutter  CLudman  EVon Korff  MLin  ESimon  GBush  TWalker  EUnutzer  J A randomized trial of relapse prevention of depression in primary care.  Arch Gen Psychiatry 2001;58241- 247PubMedGoogle ScholarCrossref
55.
Fallick  BCFleischman  CA The Importance of Employer-to-Employer Flows in the U.S. Labor Market.  Washington, DC Board of Governors of the Federal Reserve System2001;Finance and Economics Discussion Paper Series, No. 2001-18
56.
 Job openings and labor turnover survey (JOLTS). Bureau of Labor Statistics, US Department of Labor Web sitehttp://www.bls.gov/jlt/home.htmAccessed October 1, 2004
57.
 HCUPnet, healthcare cost and utilization project. Agency for Healthcare Research and Qualityhttp://hcupnet.ahrq.gov/Accessed October 1, 2004
58.
Ackerman  DLUnutzer  JGreenland  SGitlin  M Inpatient treatment of depression and associated hospital charges.  Pharmacoepidemiol Drug Saf 2002;11219- 227PubMedGoogle ScholarCrossref
59.
 Rate and audit review. Louisiana Department of Health and Hospitals Web sitehttp://dhhpublicsite.dhh.state.la.us/offices/page.asp?ID=111&Detail=3476Accessed October 1, 2004
60.
 Psychiatric hospitalization. American Psychiatric Association Web sitehttp://healthyminds.org/psychiatrichospitalization.cfmAccessed October 1, 2004
61.
Centers for Medicare & Medicaid Services, State drug utilization data. Centers for Medicare and Medicaid Serviceshttp://www.cms.hhs.gov/MedicaidDrugRebateProgram/SDUD/list.aspAccessed October 1, 2004
62.
Grembowski  DEMartin  DPatrick  DLDiehr  PKaton  WWilliams  BEngelberg  RNovak  LDickstein  DDeyo  RGoldberg  HI Managed care, access to mental health specialists, and outcomes among primary care patients with depressive symptoms.  J Gen Intern Med 2002;17258- 269PubMedGoogle ScholarCrossref
63.
Centers for Medicare & Medicaid Services, Physician fee schedule payment amount file national/carrier. 2004;http://www.cms.hhs.gov/PhysicianFeeSched/01_overview.aspAccessed October 1, 2004
64.
 The Wellmark Report: an analysis of prescription drug use in Iowa and South Dakota. http://www.wellmark.com/health_improvement/reports/downloads.htmAccessed October 1, 2004
65.
 Drug Topics Red Book. 108th Montvale, NJ Medical Economics2004;
66.
Wang  PSBeck  ABerglund  PLeutzinger  JAPronk  NRichling  DSchenk  TWSimon  GStang  PUstun  TBKessler  RC Chronic medical conditions and work performance in the health and work performance questionnaire calibration surveys.  J Occup Environ Med 2003;451303- 1311PubMedGoogle ScholarCrossref
67.
Wang  PSBeck  ALBerglund  PMcKenas  DKPronk  NPSimon  GEKessler  RC Effects of major depression on moment-in-time work performance.  Am J Psychiatry 2004;1611885- 1891PubMedGoogle ScholarCrossref
68.
Guico-Pabia  CJMurray  JFTeutsch  SMWertheimer  AIBerger  ML Indirect cost of ischemic heart disease to employers.  Am J Manag Care 2001;727- 34PubMedGoogle Scholar
69.
Barron  JBlack  DLowenstein  M Job matching and on-the-job training.  J Labor Econ 1989;71- 19Google ScholarCrossref
70.
Davidson  B Hiring an employee—how much does it cost? Workforce Management Web site2000;http://www.workforce.comAccessed October 1, 2004
71.
Lermusiaux  Y Economic consequences of reducing cost per hire. Taleo Web sitehttp://www.taleo.com/research/articles/strategic/economic-consequences-reducing-cost-per-hire-16.htmlAccessed October 1, 2004
72.
Fryback  DGDasbach  EJKlein  RKlein  BEDorn  NPeterson  KMartin  PA The Beaver Dam Health Outcomes Study: initial catalog of health-state quality factors.  Med Decis Making 1993;1389- 102PubMedGoogle ScholarCrossref
73.
Revicki  DAWood  M Patient-assigned health state utilities for depression-related outcomes.  J Affect Disord 1998;4825- 36PubMedGoogle ScholarCrossref
74.
Revicki  DABrown  REPalmer  WBakish  DRosser  WWAnton  SFFeeny  D Modelling the cost effectiveness of antidepressant treatment in primary care.  Pharmacoeconomics 1995;8524- 540PubMedGoogle ScholarCrossref
75.
Bennett  KJTorrance  GWBoyle  MHGuscott  RMoran  LA Development and testing of a utility measure for major, unipolar depression (McSad).  Qual Life Res 2000;9109- 120PubMedGoogle ScholarCrossref
76.
Weinstein  MCSiegel  JEGold  MRKamlet  MSRussell  LB Recommendations of the Panel on Cost-Effectiveness in Health and Medicine.  JAMA 1996;2761253- 1258PubMedGoogle ScholarCrossref
77.
Arias  E United States Life Tables, 2002.  Hyattsville, Md National Center for Health Statistics2004;
78.
Williams  JW  JrMulrow  CDChiquette  ENoel  PHAguilar  CCornell  J A systematic review of newer pharmacotherapies for depression in adults: evidence report summary.  Ann Intern Med 2000;132743- 756PubMedGoogle Scholar
79.
Lin  EHBKaton  WVon Korff  MRusso  JESimon  GEBush  TMRutter  CMWalker  EALudman  E Relapse of depression in primary care: rate and clinical predictors.  Arch Fam Med 1998;7443- 449PubMedGoogle ScholarCrossref
80.
Kessler  RCWang  P Screening measures for behavioral health assessment. In:Hyner  GCPeterson  KWTravis  JWDewey  JEFoerster  JJFramer  EMeds. SPM Handbook of Health Assessment Tools. Pittsburgh, Pa Society for Prospective Medicine and the Institute for Health and Productivity Management1999;33- 40Google Scholar
81.
Hewitt Associates, Health Promotion Initiatives/Managed Health Provided by Major US Employers in 1996.  Lincolnshire, Ill Benefit Surveys1997;
82.
 Consumer Price Index: medical care component. Bureau of Labor Statistics, US Department of Laborhttp://www.bls.gov/cpi/home.htmAccessed October 1, 2004
83.
Torrance  GW Measurement of health state utilities for economic appraisal.  J Health Econ 1986;51- 30PubMedGoogle ScholarCrossref
84.
Wells  KBBurnam  MARogers  WHays  RCamp  P The course of depression in adult outpatients: results from the Medical Outcomes Study.  Arch Gen Psychiatry 1992;49788- 794PubMedGoogle ScholarCrossref
85.
Simon  GE Long-term prognosis of depression in primary care.  Bull World Health Organ 2000;78439- 445PubMedGoogle Scholar
86.
Leopold  R A Year in the Life of a Million American Workers.  New York, NY MetLife Group Disability2003;
87.
Salkever  DSGoldman  HPurushothaman  MShinogle  J Disability management, employee health and fringe benefits, and long-term-disability claims for mental disorders: an empirical exploration.  Milbank Q 2000;7879- 113PubMedGoogle ScholarCrossref
88.
Bureau of Labor Statistics, Employer costs for employee compensation.  March2005;http://www.bls.gov/news.release/pdf/ecec.pdfAccessed September 15, 2005
89.
Nicholson  SPauly  MVPolsky  DSharda  CSzrek  HBerger  ML Measuring the effects of workloss on productivity with team production.  Cambridge, Mass National Bureau of Economic Research Inc2004;NBER Working Paper No. 10632
90.
Graham  JDCorso  PSMorris  JMSegui-Gomez  MWeinstein  MC Evaluating the cost-effectiveness of clinical and public health measures.  Annu Rev Public Health 1998;19125- 152PubMedGoogle ScholarCrossref
91.
National Committee for Quality Assurance, The NCQA quality dividend calculator. http://www.ncqacalculator.comAccessed October 1, 2004
92.
MacArthur Foundation Initiative on Depression and Primary Care at Dartmouth and Duke, Information for employers: depression calculator. http://www.depression-primarycare.org/organizations/employers/calculatorAccessed October 22, 2005
93.
 Productivity impact model: calculating the impact of depression in the workplace and the benefits of treatment, version 2.5. PhRMA Web sitehttp://www.depressioncalculator.comAccessed October 1, 2004
94.
Warner  KESmith  RJSmith  DGFries  BE Health and economic implications of a work-site smoking-cessation program: a simulation analysis.  J Occup Environ Med 1996;38981- 992PubMedGoogle ScholarCrossref
95.
Unutzer  JKaton  WJRusso  JSimon  GVon Korff  MLin  EWalker  ELudman  EBush  T Willingness to pay for depression treatment in primary care.  Psychiatr Serv 2003;54340- 345PubMedGoogle ScholarCrossref
96.
Ryder  R Implementation strategies and applications for health risk appraisals. In:Hyner  GCPeterson  KWTravis  JWDewey  JEFoerster  JJFramer  EMeds. SPM Handbook of Health Assessment Tools. Pittsburgh, Pa Society for Prospective Medicine and the Institute for Health and Productivity Management1999;179- 184Google Scholar
97.
Schoenbaum  MUnutzer  JMcCaffrey  DDuan  NSherbourne  CWells  KB The effects of primary care depression treatment on patients' clinical status and employment.  Health Serv Res 2002;371145- 1158PubMedGoogle ScholarCrossref
98.
Koopmanschap  MARutten  FFvan Ineveld  BMvan Roijen  L The friction cost method for measuring indirect costs of disease.  J Health Econ 1995;14171- 189PubMedGoogle ScholarCrossref
99.
Rost  KNutting  PSmith  JWerner  JDuan  N Improving depression outcomes in community primary care practice.  J Gen Intern Med 2001;16143- 149PubMedGoogle ScholarCrossref
100.
Bush  TRutter  CSimon  GVon Korff  MKaton  WJWalker  EALin  ELudman  E Who benefits from more structured depression treatment?  Int J Psychiatry Med 2004;34247- 258PubMedGoogle ScholarCrossref
101.
Wang  PSBeck  ALMcKenas  DKMeneades  LMPronk  NPSaylor  JSSimon  GEWalters  EEKessler  RC Effects of efforts to increase response rates on a workplace chronic condition screening survey.  Med Care 2002;40752- 760PubMedGoogle ScholarCrossref
102.
Sturm  R Economic grand rounds: the myth of medical cost offset.  Psychiatr Serv 2001;52738- 740PubMedGoogle ScholarCrossref
×