Context
Recommendations of treatment guidelines concerning the use of second-generation antipsychotic (SGA) agents for acute mania vary substantially across committees or working groups. Meta-analyses addressing the use of SGAs in the treatment of acute mania are lacking.
Objective
To conduct a meta-analysis of the efficacy and safety of SGAs in the treatment of acute mania.
Data Sources
Randomized controlled trials comparing SGAs with placebo, first-generation antipsychotic drugs, or mood stabilizers (MSs) in the treatment of acute mania were searched for in the PsiTri and MEDLINE databases (last search: May 2006).
Study Selection
The abstracts, titles, and index terms of studies were searched using the following key words: aripiprazole,amisulpride,clozapine,olanzapine,quetiapine,risperidone,ziprasidone, and zotepine in conjunction with mania,manic, and bipolar.
Data Extraction
Data on efficacy, global dropout, dropout due to adverse events, dropout due to inefficacy, weight gain, rate of somnolence, and extrapyramidal symptoms were extracted and combined in a meta-analysis.
Data Synthesis
A total of 24 studies with 6187 patients were included. The SGAs were significantly more efficacious than placebo. The analysis demonstrated that adding antipsychotic agents to MS treatment was significantly more effective than treatment with MSs alone. The SGAs displayed efficacy comparable with that of MSs. Some SGAs seemed to induce more extrapyramidal symptoms than placebo. The SGAs were also associated with higher rates of somnolence than placebo.
Conclusion
Currently available data suggest that combining SGAs and MSs is the most efficacious treatment of acute mania.
Mood stabilizers (MSs) and first-generation antipsychotic agents have long been the mainstay of treatment of acute mania with and without psychotic features. However, there are reports of first-generation antipsychotics inducing or worsening depressive symptoms in patients with bipolar disorder.1 Furthermore, patients with bipolar disorder are more susceptible to extrapyramidal symptoms (EPSs) than those with schizophrenia.2,3 Therefore, first-generation antipsychotics are of limited applicability in the treatment of bipolar disorders.
In recent years, second-generation antipsychotic (SGA) agents have been developed and have proved to be effective in the treatment of bipolar mania. The SGAs do not seem to induce depressive episodes, and recent studies4,5 revealed that some SGAs may have antidepressant effects.
Fountoulakis et al6 recently reviewed treatment guidelines for bipolar disorder. Their investigation revealed that guidelines for the treatment of bipolar disorder vary significantly across committees or specialist groups. In particular for the treatment of acute mania, some guidelines recommend monotherapy with an MS or an SGA drug as first-line treatment, whereas others recommend a combination of an MS and an antipsychotic agent. However, meta-analyses addressing the efficacy and effectiveness of SGAs in the treatment of acute mania are lacking.7-9
Thus, the aim of this study is to compare the efficacy and safety of (1) SGAs vs placebo, (2) SGAs vs MSs, (3) combination therapy with SGAs plus MSs vs MSs alone, and (4) SGAs vs haloperidol.
All published and unpublished randomized controlled trials that assessed the efficacy of SGAs (aripiprazole, amisulpride, clozapine, olanzapine, quetiapine, risperidone, ziprasidone, and zotepine) in the treatment of mania were searched for in the PsiTri database (http://psitri.stakes.fi) (last search: May 2006). PsiTri is a register of controlled trials that compiles the registers of all Cochrane review groups in the field of mental health. The registers of the single Cochrane review groups are compiled by means of regular searches of numerous electronic databases and conference abstract books and hand searches of major journals (the exact search strategies of the individual review groups are listed in The Cochrane Library10). We also searched MEDLINE. The abstracts, titles, and index terms of studies were searched using the following key words: aripiprazole,amisulpride,clozapine,olanzapine,quetiapine,risperidone,ziprasidone, and zotepine in conjunction with mania,manic, and bipolar. In addition, the reference sections of included articles and key reviews were screened, and the first and last authors (Michael Berk, Charles Bowden, William Carson, Marielle Erdekens, Robert Hirschfeld, Paul Keck, Sumant Khanna, Roger McIntyre, Steven Potkin, Gary Sachs, Mauricio Tohen, Lakshmi Yatham, and John Zajecka) of the included studies and the pharmaceutical companies (AstraZeneca, Eli Lilly, Janssen-Cilag, Bristol-Myers Squibb, and Pfizer) were asked by e-mail between October 1, 2005, and March 31, 2006, whether they were aware of further trials. They were also contacted for the provision of missing data necessary for the meta-analysis. We thank Tohen et al, Yatham et al, McIntyre et al, Smulevich et al, and Bowden et al for sending us additional data. A rating based on the 3 quality categories described in The Cochrane Collaboration Handbook11 was given for each trial: A indicates low risk of bias (adequate allocation concealment); B, moderate risk of bias (some doubt about the results, mainly studies said to be randomized but without an explanation of the method); and C, high risk of bias (clearly inadequate allocation concealment, eg, alternate randomization). Only trials belonging to categories A and B were included. Two of us (H.S. and S.L.) independently extracted data from the trials. Any disagreement was discussed, and the decisions were documented.
The primary outcome of interest was the mean change in the Young Mania Rating Scale (YMRS) score or similar scale scores from baseline to the end point. Further outcome parameters were the rate of response and effectiveness criteria, such as the number of participants leaving the study early (dropouts) for any reason, dropouts due to adverse events, dropouts due to inefficacy, mean weight gain, rate of somnolence, and EPSs. For response, the definition used by the authors of the original studies was adopted by the reviewers. This was generally a reduction of at least 50% on an efficacy scale such as the YMRS.12
In a once randomized–analyzed approach (last observation carried forward method) we assumed in the case of dichotomous data that participants who dropped out before completion had no change in their condition unless otherwise stated. Continuous data had to be reported as presented in the original studies without any assumptions about those lost to follow-up.
Meta-analytic calculations
The outcome data were combined in a meta-analysis. For continuous data the standardized mean difference based on the Hedges adjusted g (a slightly modified version of the Cohen D for correction in the case of small participant numbers below 10)13 and its 95% confidence interval (CI) were calculated. When standard deviations were not indicated we either derived them from P values or used the mean standard deviations of the other studies. For dichotomous data, the relative risk (RR), which is defined as the ratio of the risk of an unfavorable outcome among treatment-allocated participants to the corresponding risk of an unfavorable outcome among those in the control group, was estimated again along with its 95% CI. Whereas many meta-analysts preferred to use odds ratios some years ago, it has been shown that the RR is more intuitive14 and that odds ratios tend to be interpreted as RRs by physicians.15 This misinterpretation then leads to an overestimated impression of the effect. The random-effects model of DerSimonian and Laird16 was used in all cases. Random-effects models are, in general, more conservative than fixed-effects models because they take heterogeneity among studies into account, even if this heterogeneity is not statistically significant. Study heterogeneity was sought for by visual inspection of the forest plots and by using a χ2 test, which contrasts the RRs of the individual trials with the pooled RR. Significance levels of P<.1 were set a priori to assume the presence of heterogeneity. Results of the pooled analyses, which were statistically significantly heterogeneous, were noted in the results. In the case of significant differences between groups, the number of participants needed to treat (NNT) and the number of participants needed to harm (NNH) were calculated. For this purpose we calculated risk differences (RDs) in addition to RRs. Then, NNT/NNH was derived from the RD by the formula NNT/NNH = 1/RD, with the 95% CIs of NNT/NNH being the inverse of the upper and lower limits of the 95% CI of the RD. Studies with negative results are less likely to be published than studies with significant results. The possibility of such publication bias was examined using the funnel plot method described by Egger and colleagues.11 Owing to the small number of studies, we also tentatively analyzed the antipsychotics as a single group compared with placebo or MSs in the secondary analyses. All the calculations were performed using MetaView, meta-analytic standard software used by The Cochrane Collaboration (Review Manager Version 4.2.8, The Cochrane Collaboration, Oxford, England). The exact formulas were reported there. A P<.05 was considered significant. We conducted 4 comparisons: (1) SGAs vs placebo, (2) SGAs vs MSs, (3) SGAs vs placebo as add-on medication to MSs, and (4) SGAs vs haloperidol. In addition, in each comparison SGAs were entered in an exploratory pooled analysis. The latter results are detailed only in cases in which they were not heterogeneous.
A total of 24 studies dealing with all the SGAs except zotepine and amisulpride were included (eTable 1 and eTable 2). These studies could be classified according to 4 different comparisons (Table 1): (1) SGAs vs placebo,17-28 (2) SGAs vs MSs,22,29-32 (3) SGAs vs placebo as add-on to MSs,33-38 and (4) SGAs vs haloperidol.23,26,32,39,40 Four studies22,23,26,32 conducted 3-branch examinations and could be used in 2 comparisons each. Assessment of manic symptoms was performed using the YMRS (18 trials), the Mania Rating Scale (3 trials), and the Mania Scale (1 trial).
The baseline mania scores were similar in all the trials except 2 studies with more25 or less33 severely manic patients. The duration of most studies was 3 weeks; however, 3 studies investigated a 4-week period21,31,32 and 2 a 6-week period.33,40 Four trials23,26,30,37 investigated a 12-week period but also evaluated treatment outcomes after 3 weeks. The 3-week data were used for the analysis.
Four trials22-24,35 investigated purely manic patients, 4 studies26,31,32,34 did not report the types of manic episodes, and all the other trials examined patients with purely manic symptoms (45%-97%) and patients with mixed symptoms (3%-55%). Each of these trials was matched for episode type. Seven studies22,23,25,26,34,35,39 excluded patients with rapid cycling, 12 studies17,18,24,27,28,31-33,36-38,40 did not report data on this aspect, and 5 trials19-21,29,30 included 16% to 61% of patients with a rapid cycling course.
Given the small number of studies, the use of funnel plots (a method based on symmetry) was appropriate only for SGAs vs placebo. The plots on the primary efficacy outcomes did not suggest publication bias. The plot on dropouts regardless of reason was the only asymmetrical one, but it remains unclear whether a study was unpublished in case an SGA failed to prove superiority in terms of dropout rate.
COMPARISON 1: SGAs vs PLACEBO
Twelve trials compared the effects of aripiprazole,17-19 olanzapine,20,21 quetiapine,22,23 risperidone,24-26 and ziprasidone27,28 vs placebo in the treatment of acute mania (Table 1). Figure 1 displays the results of the primary outcome (YMRS score changes), and Table 2 gives the pooled results of the secondary outcome parameters.
Reduction in Manic Symptoms and Response Rates
Each individual SGA agent was significantly superior to placebo in treating acute manic symptoms (Figure 1). Response rates were significantly higher in the aripiprazole, olanzapine, risperidone, and ziprasidone trials but not in the quetiapine trials.
The analysis revealed a significantly lower global dropout rate in patients treated with olanzapine and risperidone but not with aripiprazole, quetiapine, and ziprasidone. Dropout due to adverse events did not differ between treatments.
Except for aripiprazole, the dropout rate due to inefficacy was lower for SGAs and for the pooled data compared with placebo.
Weight Change and Somnolence
Weight gain was significantly greater in patients treated with olanzapine and quetiapine but not with the other SGAs.
All the SGAs exhibited significantly higher rates of somnolence (Figure 2).
The incidence of EPSs was significantly higher in the aripiprazole (NNH, 13; 95% CI, 9-20) and risperidone trials and in the pooled analysis of all SGAs (Figure 3). In addition, increased EPS rates were found for ziprasidone. Although this difference was not significant (P = .06), the RD was (NNH, 11; 95% CI, 7-33). The results were heterogeneous in the risperidone trials and in the pooled analysis (χ2 = 4.98; P = .03).
There were no overall differences in the symptom severity of EPS measures using the Simpson Angus Scale or the Extrapyramidal Symptom Rating Scale in the aripiprazole, olanzapine, risperidone, and ziprasidone trials. Akathisia, however, assessed using the Barnes Akathisia Scale, proved to be significantly more pronounced in patients treated with aripiprazole and ziprasidone.
COMPARISON 2: SGAs vs MSs
Five studies investigated olanzapine, quetiapine, and risperidone vs the MSs valproate sodium29,30 or lithium22,31,32 (Table 1). Figure 4 displays the results of the primary outcome (YMRS score changes), and Table 3 gives the pooled results of the secondary outcome parameters.
Reduction in Manic Symptoms and Response and Dropout Rates
Olanzapine compared with valproate showed greater symptom improvement (Figure 4). In no other trials were differences between the comparative treatments found. All the trials together indicated a trend for superiority of SGAs compared with MSs. Response rates were reported in 2 trials only.22,24 In the olanzapine vs valproate comparison, patients treated with olanzapine showed a higher response rate. In the quetiapine vs lithium comparison, no difference was observed. As to the global dropout rate and the dropout rates due to adverse events or inefficacy, no differences between SGAs and MSs could be discerned.
Weight Change, Somnolence, and EPSs
Patients treated with olanzapine and quetiapine had greater weight gain and a greater rate of somnolence than those treated with lithium or valproate (data for risperidone were not available). In these studies, the rates of EPS were not reported.
COMPARISON 3: SGAs vs PLACEBO AS ADD-ON MEDICATION TO MSs
The 6 studies included in this analysis investigated olanzapine,33 quetiapine,34,35 risperidone,36,37 and ziprasidone38 vs placebo as add-on medication to the MSs lithium,33-38 valproate,33-37 and carbamazepine37 (Table 1). Three of these studies33-35 investigated patients who did not fully respond to MS monotherapy after 7, 14, or 28 days. Two more studies36,37 included 43% and 64% of patients, respectively, with partial response to monotherapy with MSs. One trial38 did not report previous treatment. Figure 5 displays the results of the primary outcome (YMRS score changes), and Table 4 gives the pooled results of the secondary outcome parameters.
Reduction in Manic Symptoms and Response Rates
Compared with placebo as add-on medication to MSs, statistically significant superiority in improving manic symptoms was found for olanzapine, quetiapine, and risperidone but not for ziprasidone (Figure 5). Considered as a group, the SGAs were significantly superior.
The percentage of patients with a response was much higher in groups of patients who received add-on treatment with olanzapine and quetiapine but not with risperidone (data for ziprasidone were not available). Analysis of all the trials showed a significant advantage for combination therapy.
The global dropout rate was significantly lower in patients treated with MSs plus quetiapine or risperidone than in those treated with MSs plus placebo. No difference was found for olanzapine and ziprasidone. Analysis of all the trials showed a significantly reduced global dropout rate in patients treated with combination therapy.
In studies with quetiapine, risperidone, and ziprasidone, adverse event dropout rates were not different; they were, however, higher for olanzapine than for placebo add-on treatment. There was no overall difference between the active treatment and placebo groups.
Regarding the dropout rate due to inefficacy, a significant advantage for combination therapy was shown in the olanzapine study but not for quetiapine and risperidone (data for ziprasidone were not available). The combined dropout rate due to inefficacy was significantly lower in patients treated with combination therapy.
Weight Change, Somnolence, and EPS
Mean weight change was increased in patients treated with olanzapine, risperidone, and quetiapine (data for ziprasidone were not available). The rate of somnolence was significantly higher in patients treated with olanzapine, quetiapine, and ziprasidone but not with risperidone. The pooled analysis revealed a significantly higher rate of somnolence in patients treated with MSs plus SGAs.
Data on EPS rates were reported only in the risperidone and ziprasidone trials. The incidence of EPSs was higher with ziprasidone than with placebo but not with risperidone vs placebo.
COMPARISON 4: SGAs vs HALOPERIDOL
We included 2 studies investigating aripiprazole39 and olanzapine40 vs haloperidol and the branches of 3 further studies analyzing quetiapine23 and risperidone26,32 vs haloperidol (Table 1). Figure 6 displays the results of the primary outcome (YMRS score changes), and Table 5 gives the pooled results of the secondary outcome parameters.
Reduction in Manic Symptoms and Response Rates
Reduction in manic symptoms was similar for aripiprazole and risperidone compared with haloperidol. However, olanzapine and quetiapine showed a significantly lower improvement in YMRS scores (Figure 6). Overall there were no significant differences in mean YMRS score changes between patients treated with an SGA or haloperidol. However, the overall analysis was significantly heterogeneous (χ2 = 13.0; P = .01) owing to the different results between the individual SGAs. The response rates did not differ between SGAs and haloperidol.
The analysis revealed a significantly lower global dropout rate in patients treated with aripiprazole and a trend toward a higher rate in patients treated with quetiapine. For olanzapine and risperidone, no difference was observed.
The dropout rate due to adverse events was significantly lower for aripiprazole. No differences were found in the other trials.
No differences in the dropout rate due to inefficacy were revealed for olanzapine, quetiapine, or risperidone compared with haloperidol. The dropout rate due to inefficacy was higher with aripiprazole.
Weight Change and Somnolence
Only 3 studies26,39,40 reported data on weight change. In olanzapine-treated patients, the mean weight change was significantly greater than in haloperidol-treated patients but not for aripiprazole or risperidone (data on quetiapine were not available).
Regarding olanzapine, the rate of somnolence was significantly higher compared with that of haloperidol. It did not differ in the quetiapine and risperidone trials (data for aripiprazole were not available). The pooled analysis revealed that the rate of somnolence was significantly higher in patients treated with SGAs.
Four trials27-30 reported the number of patients with at least 1 EPS. The analysis revealed a significantly higher incidence of EPSs in patients treated with haloperidol compared with all SGAs, taken either singly or as a group. Depressive symptoms improved more with aripiprazole treatment compared with haloperidol but not with olanzapine, quetiapine, or risperidone. In the pooled analysis, however, depressive symptoms improved more with SGAs.
To our knowledge, this is the first broad meta-analysis of efficacy, effectiveness, and adverse effects of SGAs in the treatment of acute mania. Its results deserve careful reflection. To draw firm conclusions concerning the overall benefits of SGAs, it is not enough simply to consider efficacy data, such as a reduction in symptoms in mania rating scales. Effectiveness criteria, which include dropout rates for any reason and due to adverse events, probably reflect the most valuable outcome parameters for clinical practice.
The SGAs are significantly more efficacious than placebo in the treatment of acute mania, as indicated by greater reductions in mania rating scores. Except for quetiapine, the superiority of SGAs is emphasized by higher response rates and, except for aripiprazole, lower dropout rates due to inefficacy.
The comparison of SGAs as a group with MSs as a group showed a certain trend toward the superiority of SGAs. This result was mainly due to the significant superiority of olanzapine in reducing manic symptoms. No differences were found for any other drugs or in any secondary outcome criteria.
Adding SGAs to MSs clearly increased the efficacy compared with monotherapy with MSs alone. Results of each single SGA drug, however, have to be discussed in detail. Olanzapine, for example, showed higher response rates and lower rates of dropout due to inefficacy but higher rates of dropout due to adverse events. Thus, the potential advantages of olanzapine in higher efficacy are counteracted by a higher rate of adverse effects, which limits clinical effectiveness. For ziprasidone, in contrast, there is no proof of higher efficacy as an add-on treatment to MSs. These results are disputable because in 5 trials33-37 patients with partial responses to monotherapy were included. These studies addressed more the question of whether an add-on treatment of an SGA to an MS in patients who were partial responders or nonresponders is more helpful than continuing them on their first medication rather than the efficacy of combination treatment. Therefore, we are reluctant to generalize the results of this comparison. However, these results are, in a way, remarkable because they are not in accordance with many clinical guidelines.6 Some guidelines recommend as first-choice treatment monotherapy with an MS41-47 or an SGA,45-48 whereas others recommend combination treatment with MSs and SGAs,49,50 especially in the case of severe manic episodes. Before any definitive recommendation of a combination therapy, pharmacoeconomic cost-benefit analyses are required. The selected studies do not provide any information on this question. In a recently published review51 the researchers were unable to draw any firm conclusions because of the limited availability of meaningful data.
The SGAs showed no superiority in improving manic symptoms compared with haloperidol. Results for the individual SGAs were diverse. Olanzapine and quetiapine reduced manic symptoms less effectively than haloperidol. In addition, quetiapine showed a lower rate of response and a higher rate of global dropout. Aripiprazole was less efficacious in terms of a higher rate of dropouts due to inefficacy, but effectiveness criteria such as rates of global dropout and dropout due to adverse events were superior compared with haloperidol. These findings are surprising because in meta-analyses in schizophrenia olanzapine has been consistently shown to be more effective than haloperidol, and quetiapine proved to be as effective as haloperidol.52-54 Haloperidol-treated patients, however, showed a higher rate of dropout due to adverse events and higher rates of EPSs, which limits its use. Depressive symptoms improve less with haloperidol than with SGAs. Depressive symptoms were reported only as mean reductions in depression rating scale scores, and no study reported the number of patients who switched to depression. Therefore, we could not clarify whether SGAs improve depressive symptoms more than haloperidol or whether haloperidol more frequently leads to a switch into a full episode of major depression.
Adverse effects might hamper the clinical effectiveness of an antipsychotic agent despite its efficacy. As far as the data of the included studies have been reported, we analyzed the 3 important adverse events of antipsychotic drug treatment: weight gain, somnolence, and EPSs. In many studies, however, data on the rate of adverse events were reported incompletely. The SGAs are not alike, and this “class” of drugs is heterogeneous within itself.55 The results require a balanced evaluation.
Mean weight gain was significantly greater in olanzapine- and quetiapine-treated patients, as is known from trials in schizophrenia. In contrast to the treatment of schizophrenia, however, very few data are available for bipolar disorder concerning metabolic effects.56,57
Rates of somnolence were increased with SGA treatment. It was not only higher in olanzapine- and quetiapine-treated patients but also in aripiprazole-, risperidone-, and ziprasidone-treated patients compared with placebo. The severity of sedation was not indicated in the included studies, which limits the interpretation of the present results. In the treatment of acute mania, somnolence can be a welcome effect that can calm agitated patients.
Findings concerning EPS rates are difficult to interpret, and EPS data were inconsistently reported, particularly in comparisons between SGAs and MSs alone or in combination. Only olanzapine and quetiapine had no evidence of increased EPS rates. In the placebo-controlled trials, a higher incidence of EPSs was observed for aripiprazole, risperidone, and ziprasidone; however, increases in EPS rating scales marginally failed to reach statistical significance. In the 2 trials in which risperidone was used in addition to an MS, no higher incidence of EPS was found compared with a treatment of MSs plus placebo. Aripiprazole-treated patients additionally showed significantly higher akathisia scores compared with placebo. No further data on aripiprazole were available compared with MSs. Treatment with ziprasidone also revealed increased scores on akathisia rating scales compared with placebo and a higher incidence of EPSs in combination with an MS compared with an MS plus placebo.
These results may open the discussion on whether some SGAs might be more prone to induce EPSs in patients with bipolar disorder. We conclude that at least some SGAs are more likely to generate EPSs compared with placebo. These results become more evident when looking at the incidence rates rather than the changes in rating scale scores. It seems to us that the incidence rate is of more clinical relevance.
In this regard, patients with bipolar disorder may differ from those with schizophrenia. For all SGAs investigated in schizophrenia trials, Leucht et al52,58 did not find evidence of EPS rates higher than for placebo. A recent study6 reanalyzed data on EPSs in olanzapine trials in patients with schizophrenia and bipolar disorder. This study revealed a higher incidence of EPSs in haloperidol-treated patients with bipolar disorder compared with haloperidol-treated patients with schizophrenia. They did not find a difference between olanzapine-treated patients with bipolar disorder and schizophrenia.
The rate of completers varied among different studies and trial arms. Furthermore, data on person-days of exposure were usually lacking. Thus, an unbalanced exposure of treatments cannot be excluded. In all the trials, antipsychotic agents and MSs were prescribed in commonly used dose ranges. The effect of psychotic features on efficacy were reported in 14 studies. Treatment efficacy was not different in patients with vs without psychotic symptoms in all but 2 studies.23,29 Only 2 placebo-controlled studies reported outcome of treatment in patients with rapid cycling course. The studies concluded that aripiprazole19 and olanzapine20 are more efficacious than placebo. The effect of pure manic or mixed episode type on the outcome was also only marginally reported. Placebo-controlled trials showed that antipsychotic drugs are efficacious in manic and mixed episode types. One study reported that a combination of olanzapine with MSs was more efficacious than MSs alone in patients with mixed episodes.33 Other studies found no difference in efficacy between episode types.34,36 Only 1 study33 reported the time to respond. In this study, median response time was significantly shorter in patients treated with a combination of olanzapine and MSs (18 days) compared with patients treated with MSs alone (28 days).
A limitation of this review is that most of the trials were sponsored by the pharmaceutical industry and were conducted to gain regulatory approval for the treatment of acute mania. We found only 2 studies lacking industry support.31,32 Therefore, the possibility of a sponsor bias induced in favor of their product cannot be excluded.59
Furthermore, the statistical power varied among the 4 categories of comparisons. The greatest number of studies (n = 12) and patients (n = 2827) was available for the first comparison (SGAs vs placebo). Five studies with 636 patients were included in the second comparison (SGAs vs MSs), 6 studies with 1395 patients in the third comparison (SGAs vs placebo as add-on medication to MSs), and 5 studies with 1329 patients in the last comparison (SGAs vs haloperidol). Owing to the low number of patients and trials in 3 comparisons, we also tentatively analyzed the SGAs as a single group vs the comparison treatments. The exploratory pooling procedure seems justified because efficacy results were rather homogenous, in particular in comparisons 2 and 4. Concerning all investigated adverse events, results were much more heterogeneous, indicating that SGAs differed substantially in tolerability.55
In conclusion, this meta-analysis found that SGA agents as add-on medication to MSs are highly superior to MSs alone in improving acute manic symptoms, as indicated by greater reductions in mania scores, higher response rates, and fewer dropouts due to inefficacy. However, effectiveness criteria should also be included in treatment decisions. Adverse effects such as somnolence, weight gain, and EPS have an impact on treatment adherence. Based on the results reported herein, combination treatment with an SGA and an MS should be the treatment of choice, in particular for severe manic episodes.
Correspondence: Harald Scherk, MD, Department of Psychiatry and Psychotherapy, Georg-August University Goettingen, Von-Siebold-Str 5, 37075 Goettingen, Germany (hscherk@uni-goettingen.de).
Submitted for Publication: February 20, 2006; final revision received September 8, 2006; accepted September 20, 2006.
Financial Disclosure: Dr Scherk has received speech honoraria from AstraZeneca and Eli Lilly and has accepted travel or hospitality not related to a speaking engagement from Eli Lilly. Dr Pajonk has been a consultant for AstraZeneca, Eli Lilly, Janssen, Novartis, and Wyeth and has acted as an expert witness for AstraZeneca, Eli Lilly, and Janssen. Dr Pajonk receives research funding from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen, Novartis, Pfizer, Sanofi-Synthelabo, and Wyeth. In addition, he is a member of a speakers' bureau for AstraZeneca and Janssen and has accepted paid speaking engagements in industry-sponsored symposia from AstraZeneca, Eli Lilly, Janssen, and Pfizer and travel or hospitality not related to a speaking engagement from AstraZeneca, Eli Lilly, and Janssen. Dr Leucht has received speech or consultancy honoraria from Sanofi-Aventis, Bristol-Myers Squibb, Eli Lilly, Janssen, Johnson & Johnson, Lundbeck, and Pfizer and research support from Sanofi-Aventis and Eli Lilly.
Additional Information: The online-only eTable 1 and eTable 2 are available.
1.Esparon
JKolloori
JNaylor
GJMcHarg
AMSmith
AHHopwood
SE Comparison of the prophylactic action of flupenthixol with placebo in lithium treated manic-depressive patients.
Br J Psychiatry 1986;148723- 725
PubMedGoogle ScholarCrossref 2.Mukherjee
SRosen
AMCaracci
GShukla
S Persistent tardive dyskinesia in bipolar patients.
Arch Gen Psychiatry 1986;43342- 346
PubMedGoogle ScholarCrossref 3.Cavazzoni
PABerg
PHKryzhanovskaya
LABriggs
SDRoddy
TETohen
MKane
JM Comparison of treatment-emergent extrapyramidal symptoms in patients with bipolar mania or schizophrenia during olanzapine clinical trials.
J Clin Psychiatry 2006;67107- 113
PubMedGoogle ScholarCrossref 4.Tohen
MVieta
ECalabrese
JKetter
TASachs
GBowden
CMitchell
PBCentorrino
FRisser
RBaker
RWEvans
ARBeymer
KDube
STollefson
GDBreier
A Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolar I depression.
Arch Gen Psychiatry 2003;601079- 1088
PubMedGoogle ScholarCrossref 5.Calabrese
JRKeck
PE
JrMacfadden
WMinkwitz
MKetter
TAWeisler
RHCutler
AJMcCoy
RWilson
EMullen
JA Randomized, double-blind, placebo-controlled trial of quetiapine in the treatment of bipolar I or II depression.
Am J Psychiatry 2005;1621351- 1360
PubMedGoogle ScholarCrossref 6.Fountoulakis
KNVieta
ESanchez-Moreno
JKaprinis
SGGoikolea
JMKaprinis
GS Treatment guidelines for bipolar disorder: a critical review.
J Affect Disord 2005;861- 10
PubMedGoogle ScholarCrossref 7.Yatham
LN Acute and maintenance treatment of bipolar mania: the role of atypical antipsychotics.
Bipolar Disord 2003;5
((suppl 2))
7- 19
PubMedGoogle ScholarCrossref 9.Perlis
RHWelge
JAVornik
LAHirschfeld
RMKeck
PE Atypical antipsychotics in the treatment of mania: a meta-analysis of randomized, placebo-controlled trials.
J Clin Psychiatry 2006;67509- 516
PubMedGoogle ScholarCrossref 10. Cochrane Library on CD-ROM. Chichester, England: John Wiley & Sons;2005;
(3)
12.Young
RCBiggs
JTZiegler
VEMeyer
DA A rating scale for mania: reliability, validity and sensitivity.
Br J Psychiatry 1978;133429- 435
PubMedGoogle ScholarCrossref 13.Hedges
LV Statistical considerations. Cooper
HHedges
LV eds.
The Handbook of Research Synthesis. New York, NY: Russell Sage Foundation1994;30- 33
Google Scholar 14.Boissel
JPCucherat
MLi
WChatellier
GGueyffier
FBuyse
MBoutitie
FNony
PHaugh
MMignot
G The problem of therapeutic efficacy indices, 3: comparison of the indices and their use [in French].
Therapie 1999;54405- 411
PubMedGoogle Scholar 15.Deeks
JIssues in the selection for the meta-analyses of binary data. In: Abstracts of the 8th International Cochrane Colloquium; October25- 282000; Cape Town, South Africa
17.Keck
PE
JrMarcus
RTourkodimitris
SAli
MLiebeskind
ASaha
AIngenito
GAripiprazole Study Group, A placebo-controlled, double-blind study of the efficacy and safety of aripiprazole in patients with acute bipolar mania.
Am J Psychiatry 2003;1601651- 1658
PubMedGoogle ScholarCrossref 18.McQuade
RDMarcus
RSanchez
R Aripiprazole vs placebo in acute mania: safety and tolerability pooled analysis. Paper presented at: 5th International Conference on Bipolar Disorder; June12- 142003; Pittsburgh, Pa
19.Sachs
GSanchez
RMarcus
RStock
EMcQuade
RCarson
WAbou-Gharbia
NImpellizzeri
CKaplita
SRollin
LIwamoto
T Aripiprazole in the treatment of acute manic or mixed episodes in patients with bipolar I disorder: a 3-week placebo-controlled study.
J Psychopharmacol 2006;20536- 546
PubMedGoogle ScholarCrossref 20.Tohen
MSanger
TMMcElroy
SLTollefson
GDChengappa
KNDaniel
DGPetty
FCentorrino
FWang
RGrundy
SLGreaney
MGJacobs
TGDavid
SRToma
VOlanzapine HGEH Study Group, Olanzapine versus placebo in the treatment of acute mania.
Am J Psychiatry 1999;156702- 709
PubMedGoogle Scholar 21.Tohen
MJacobs
TGGrundy
SLMcElroy
SLBanov
MCJanicak
PGSanger
TRisser
RZhang
FToma
VFrancis
JTollefson
GDBreier
AOlanzapine HGEH Study Group, Efficacy of olanzapine in acute bipolar mania: a double-blind, placebo-controlled study.
Arch Gen Psychiatry 2000;57841- 849
PubMedGoogle ScholarCrossref 22.Bowden
CLGrunze
HMullen
JBrecher
MPaulsson
BJones
MVagero
MSvensson
K A randomized, double-blind, placebo-controlled efficacy and safety study of quetiapine or lithium as monotherapy for mania in bipolar disorder.
J Clin Psychiatry 2005;66111- 121
PubMedGoogle ScholarCrossref 23.McIntyre
RSBrecher
MPaulsson
BHuizar
KMullen
J Quetiapine or haloperidol as monotherapy for bipolar mania: a 12-week double-blind, randomised, parallel-group, placebo-controlled trial.
Eur Neuropsychopharmacol 2005;15573- 585
PubMedGoogle ScholarCrossref 24.Hirschfeld
RMKeck
PE
JrKramer
MKarcher
KCanuso
CEerdekens
MGrossman
F Rapid antimanic effect of risperidone monotherapy: a 3-week multicenter, double-blind, placebo-controlled trial.
Am J Psychiatry 2004;1611057- 1065
PubMedGoogle ScholarCrossref 25.Khanna
SVieta
ELyons
BGrossman
FEerdekens
MKramer
M Risperidone in the treatment of acute mania: double blind, placebo-controlled study.
Br J Psychiatry 2005;187229- 234
PubMedGoogle ScholarCrossref 26.Smulevich
ABKhanna
SEerdekens
MKarcher
KKramer
MGrossman
F Acute and continuation risperidone monotherapy in bipolar mania: a 3-week placebo-controlled trial followed by a 9-week double-blind trial of risperidone and haloperidol.
Eur Neuropsychopharmacol 2005;1575- 84
PubMedGoogle ScholarCrossref 27.Keck
PE
JrVersiani
MPotkin
SWest
SAGiller
EIce
KZiprasidone in Mania Study Group, Ziprasidone in the treatment of acute bipolar mania: a three-week, placebo-controlled, double-blind, randomized trial.
Am J Psychiatry 2003;160741- 748
PubMedGoogle ScholarCrossref 28.Potkin
SGKeck
PE
JrSegal
SIce
KEnglish
P Ziprasidone in acute bipolar mania: a 21-day randomized, double-blind, placebo-controlled replication trial.
J Clin Psychopharmacol 2005;25301- 310
PubMedGoogle ScholarCrossref 29.Tohen
MBaker
RWAltshuler
LLZarate
CASuppes
TKetter
TAMilton
DRRisser
RGilmore
JABreier
ATollefson
GA Olanzapine versus divalproex in the treatment of acute mania.
Am J Psychiatry 2002;1591011- 1017
PubMedGoogle ScholarCrossref 30.Zajecka
JMWeisler
RSachs
GSwann
ACWozniak
PSommerville
KW A comparison of the efficacy, safety, and tolerability of divalproex sodium and olanzapine in the treatment of bipolar disorder.
J Clin Psychiatry 2002;631148- 1155
PubMedGoogle ScholarCrossref 31.Berk
MIchim
LBrook
S Olanzapine compared to lithium in mania: a double-blind randomized controlled trial.
Int Clin Psychopharmacol 1999;14339- 343
PubMedGoogle ScholarCrossref 32.Segal
JBerk
MBrook
S Risperidone compared with both lithium and haloperidol in mania: a double-blind randomized controlled trial.
Clin Neuropharmacol 1998;21176- 180
PubMedGoogle Scholar 33.Tohen
MChengappa
KNSuppes
TZarate
CA
JrCalabrese
JRBowden
CLSachs
GSKupfer
DJBaker
RWRisser
RCKeeter
ELFeldman
PDTollefson
GDBreier
A Efficacy of olanzapine in combination with valproate or lithium in the treatment of mania in patients partially nonresponsive to valproate or lithium monotherapy.
Arch Gen Psychiatry 2002;5962- 69
PubMedGoogle ScholarCrossref 34.Sachs
GChengappa
KNSuppes
TMullen
JABrecher
MDevine
NASweitzer
DE Quetiapine with lithium or divalproex for the treatment of bipolar mania: a randomized, double-blind, placebo-controlled study.
Bipolar Disord 2004;6213- 223
PubMedGoogle ScholarCrossref 35.Yatham
LNPaulsson
BMullen
JVagero
AM Quetiapine versus placebo in combination with lithium or divalproex for the treatment of bipolar mania.
J Clin Psychopharmacol 2004;24599- 606
PubMedGoogle ScholarCrossref 36.Sachs
GSGrossman
FGhaemi
SNOkamoto
ABowden
CL Combination of a mood stabilizer with risperidone or haloperidol for treatment of acute mania: a double-blind, placebo-controlled comparison of efficacy and safety.
Am J Psychiatry 2002;1591146- 1154
PubMedGoogle ScholarCrossref 37.Yatham
LNGrossman
FAugustyns
IVieta
ERavindran
A Mood stabilisers plus risperidone or placebo in the treatment of acute mania: international, double-blind, randomised controlled trial.
Br J Psychiatry 2003;182141- 147
PubMedGoogle ScholarCrossref 38.Weisler
RHDunn
JEnglish
P Ziprasidone in adjunctive treatment of acute bipolar mania: a randomized, placebo-controlled trial. Paper presented at: 16th Congress of the European College of Neuropsychopharmacology; September20- 242003; Prague, Czech Republic
39.Vieta
EBourin
MSanchez
RMarcus
RStock
EMcQuade
RCarson
WAbou-Gharbia
NSwanink
RIwamoto
TAripoprazole Study Group, Effectiveness of aripiprazole vs. haloperidol in acute bipolar mania: double-blind, randomised, comparative 12-week trial.
Br J Psychiatry 2005;187235- 242
PubMedGoogle ScholarCrossref 40.Tohen
MGoldberg
JFGonzalez-Pinto Arrillaga
AMAzorin
JMVieta
EHardy-Bayle
MCLawson
WBEmsley
RAZhang
FBaker
RWRisser
RCNamjoshi
MAEvans
ARBreier
A A 12-week, double-blind comparison of olanzapine vs haloperidol in the treatment of acute mania.
Arch Gen Psychiatry 2003;601218- 1226
PubMedGoogle ScholarCrossref 41.Suppes
TCalabrese
JRMitchell
PBPazzaglia
PJPotter
WZZarin
DA Algorithms for the treatment of bipolar manic-depressive illness.
Psychopharmacol Bull 1995;31469- 474
PubMedGoogle Scholar 42.Kusamakar
VYatham
LParikh
S Bipolar Disorder: A Summary of Clinical Issues and Treatment Options. Halifax, Nova Scotia: CANMAT Monograph;1997;
43.Bauer
MSCallahan
AMJampala
CPetty
FSajatovic
MSchaefer
VWittlin
BPowell
BJ Clinical practice guidelines for bipolar disorder from the Department of Veterans Affairs.
J Clin Psychiatry 1999;609- 21
PubMedGoogle ScholarCrossref 44.Suppes
TDennehy
EBSwann
ACBowden
CLCalabrese
JRHirschfeld
RMKeck
PE
JrSachs
GSCrismon
MLToprac
MGShon
SPTexas Consensus Conference Panel on Medication Treatment of Bipolar Disorder, Report of the Texas Consensus Conference Panel on Medication Treatment of Bipolar Disorder 2000.
J Clin Psychiatry 2002;63288- 299
PubMedGoogle ScholarCrossref 45.Sachs
GSPrintz
DJKahn
DACarpenter
DDocherty
JP The Expert Consensus Guideline Series: medication treatment of bipolar disorder 2000.
Postgrad Med 2000;
((Spec No))
1- 104
PubMedGoogle Scholar 46.Grunze
HKasper
SGoodwin
GBowden
CBaldwin
DLicht
RWVieta
EMoller
HJWFSBP Task Force on Treatment Guidelines for Bipolar Disorders, The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Bipolar Disorders, Part II: Treatment of Mania.
World J Biol Psychiatry 2003;45- 13
PubMedGoogle ScholarCrossref 47.Goodwin
GMConsensus Group of the British Association for Psychopharmacology, Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology.
J Psychopharmacol 2003;17149- 173
PubMedGoogle ScholarCrossref 48.Allen
MHCurrier
GWHughes
DHReyes-Harde
MDocherty
JPExpert Consensus Panel for Behavioral Emergencies, The Expert Consensus Guideline Series: treatment of behavioral emergencies.
Postgrad Med 2001;
((Spec No.))
1- 88
PubMedGoogle Scholar 49.American Psychiatric Association, Practice guideline for the treatment of patients with bipolar disorder (revision).
Am J Psychiatry 2002;159
((suppl))
1- 50
Google ScholarCrossref 50.Licht
RWVestergaard
PKessing
LVLarsen
JKThomsen
PHDanish Psychiatric Association and the Child and Adolescent Psychiatric Association in Denmark, Psychopharmacological treatment with lithium and antiepileptic drugs: suggested guidelines from the Danish Psychiatric Association and the Child and Adolescent Psychiatric Association in Denmark.
Acta Psychiatr Scand Suppl 2003;
((419))
1- 22
PubMedGoogle Scholar 51.Fleurence
RLDixon
JMRevicki
DA Economics of atypical antipsychotics in bipolar disorder: a review of the literature.
CNS Drugs 2006;20591- 599
PubMedGoogle ScholarCrossref 52.Leucht
SPitschel-Walz
GAbraham
DKissling
W Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials.
Schizophr Res 1999;3551- 68
PubMedGoogle ScholarCrossref 53.Geddes
JFreemantle
NHarrison
PBebbington
P Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis.
BMJ 2000;3211371- 1376
PubMedGoogle ScholarCrossref 54.Davis
JMChen
N Choice of maintenance medication for schizophrenia.
J Clin Psychiatry 2003;64
((suppl 16))
24- 33
PubMedGoogle Scholar 55.McIntyre
RSKonarski
JZ Tolerability profiles of atypical antipsychotics in the treatment of bipolar disorder.
J Clin Psychiatry 2005;66
((suppl 3))
28- 36
PubMedGoogle ScholarCrossref 56.Hennen
JPerlis
RHSachs
GTohen
MBaldessarini
RJ Weight gain during treatment of bipolar I patients with olanzapine.
J Clin Psychiatry 2004;651679- 1687
PubMedGoogle ScholarCrossref 57.Gergerlioglu
HSSavas
HACelik
ASavas
EYumru
MTarakcioglu
MGergerlioglu
NAtmaca
M Atypical antipsychotic usage-related higher serum leptin levels and disabled lipid profiles in euthymic bipolar patients.
Neuropsychobiology 2006;53108- 112
PubMedGoogle ScholarCrossref 58.Leucht
SPitschel-Walz
GEngel
RRKissling
W Amisulpride, an unusual “atypical” antipsychotic: a meta-analysis of randomized controlled trials.
Am J Psychiatry 2002;159180- 190
PubMedGoogle ScholarCrossref 59.Heres
SDavis
JMaino
KJetzinger
EKissling
WLeucht
S Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-to-head comparison studies of second-generation antipsychotics.
Am J Psychiatry 2006;163185- 194
PubMedGoogle ScholarCrossref