[Skip to Navigation]
Sign In
Table 1. 
Demographic and Clinical Features of the Sample
Demographic and Clinical Features of the Sample
Table 2. 
Candidate Regions and Genes Selected for Analysis by Quantitative Multiplex Polymerase Chain Reaction of Short Fluorescent Fragments
Candidate Regions and Genes Selected for Analysis by Quantitative Multiplex Polymerase Chain Reaction of Short Fluorescent Fragments
Table 3. 
Recurrent Copy Number Variations (CNVs) and Clinical Features of the Sample
Recurrent Copy Number Variations (CNVs) and Clinical Features of the Sample
Table 4. 
Genotypes and Plasma Proline Levels of the Cases Bearing the PRODH Deletion
Genotypes and Plasma Proline Levels of the Cases Bearing the PRODH Deletion
1.
Friedman  JMBaross  ADelaney  ADAlly  AArbour  LArmstrong  LAsano  JBailey  DKBarber  SBirch  PBrown-John  MCao  MChan  SCharest  DLFarnoud  NFernandes  NFlibotte  SGo  AGibson  WTHolt  RAJones  SJKennedy  GCKrzywinski  MLanglois  SLi  HI McGillivray  BCNayar  TPugh  TJRajcan-Separovic  ESchein  JESchnerch  ASiddiqui  AVan Allen  MIWilson  GYong  SLZahir  FEydoux  PMarra  MA Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation [published correction appears in Am J Hum Genet. 2006;79(6):1135].  Am J Hum Genet 2006;79 (3) 500- 513PubMedGoogle ScholarCrossref
2.
Froyen  GVan Esch  HBauters  MHollanders  KFrints  SGVermeesch  JRDevriendt  KFryns  JPMarynen  P Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes.  Hum Mutat 2007;28 (10) 1034- 1042PubMedGoogle ScholarCrossref
3.
Menten  BMaas  NThienpont  BBuysse  KVandesompele  JMelotte  Cde Ravel  TVan Vooren  SBalikova  IBackx  LJanssens  SDe Paepe  ADe Moor  BMoreau  YMarynen  PFryns  JPMortier  GDevriendt  KSpeleman  FVermeesch  JR Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports.  J Med Genet 2006;43 (8) 625- 633PubMedGoogle ScholarCrossref
4.
Marshall  CRNoor  AVincent  JBLionel  ACFeuk  LSkaug  JShago  MMoessner  RPinto  DRen  YThiruvahindrapduram  BFiebig  ASchreiber  SFriedman  JKetelaars  CEVos  YJFicicioglu  CKirkpatrick  SNicolson  RSloman  LSummers  AGibbons  CATeebi  AChitayat  DWeksberg  RThompson  AVardy  CCrosbie  VLuscombe  SBaatjes  RZwaigenbaum  LRoberts  WFernandez  BSzatmari  PScherer  SW Structural variation of chromosomes in autism spectrum disorder.  Am J Hum Genet 2008;82 (2) 477- 488PubMedGoogle ScholarCrossref
5.
Sebat  JLakshmi  BMalhotra  DTroge  JLese-Martin  CWalsh  TYamrom  BYoon  SKrasnitz  AKendall  JLeotta  APai  DZhang  RLee  YHHicks  JSpence  SJLee  ATPuura  KLehtimäki  TLedbetter  DGregersen  PKBregman  JSutcliffe  JSJobanputra  VChung  WWarburton  DKing  MCSkuse  DGeschwind  DHGilliam  TCYe  KWigler  M Strong association of de novo copy number mutations with autism.  Science 2007;316 (5823) 445- 449PubMedGoogle ScholarCrossref
6.
Christian  SLBrune  CWSudi  JKumar  RALiu  SKaramohamed  SBadner  JAMatsui  SConroy  J McQuaid  DGergel  JHatchwell  EGilliam  TCGershon  ESNowak  NJDobyns  WBCook  EH  Jr Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder.  Biol Psychiatry 2008;63 (12) 1111- 1117PubMedGoogle ScholarCrossref
7.
Szatmari  PPaterson  ADZwaigenbaum  LRoberts  WBrian  JLiu  XQVincent  JBSkaug  JLThompson  APSenman  LFeuk  LQian  CBryson  SEJones  MBMarshall  CRScherer  SWVieland  VJBartlett  CMangin  LVGoedken  RSegre  APericak-Vance  MACuccaro  MLGilbert  JRWright  HHAbramson  RKBetancur  CBourgeron  TGillberg  CLeboyer  MBuxbaum  JDDavis  KLHollander  ESilverman  JMHallmayer  JLotspeich  LSutcliffe  JSHaines  JLFolstein  SEPiven  JWassink  THSheffield  VGeschwind  DHBucan  MBrown  WTCantor  RMConstantino  JNGilliam  TCHerbert  MLajonchere  CLedbetter  DHLese-Martin  CMiller  JNelson  SSamango-Sprouse  CASpence  SState  MTanzi  RECoon  HDawson  GDevlin  BEstes  AFlodman  PKlei  L McMahon  WMMinshew  NMunson  JKorvatska  ERodier  PMSchellenberg  GDSmith  MSpence  MAStodgell  CTepper  PGWijsman  EMYu  CERogé  BMantoulan  CWittemeyer  KPoustka  AFelder  BKlauck  SMSchuster  CPoustka  FBölte  SFeineis-Matthews  SHerbrecht  ESchmötzer  GTsiantis  JPapanikolaou  KMaestrini  EBacchelli  EBlasi  FCarone  SToma  CVan Engeland  Hde Jonge  MKemner  CKoop  FLangemeijer  MHijmans  CStaal  WGBaird  GBolton  PFRutter  MLWeisblatt  EGreen  JAldred  CWilkinson  JAPickles  ALe Couteur  ABerney  T McConachie  HBailey  AJFrancis  KHoneyman  GHutchinson  AParr  JRWallace  SMonaco  APBarnby  GKobayashi  KLamb  JASousa  ISykes  NCook  EHGuter  SJLeventhal  BLSalt  JLord  CCorsello  CHus  VWeeks  DEVolkmar  FTauber  MFombonne  EShih  AMeyer  KJAutism Genome Project Consortium, Mapping autism risk loci using genetic linkage and chromosomal rearrangements [published correction appears in Nat Genet. 2007;39(10):1285].  Nat Genet 2007;39 (3) 319- 328PubMedGoogle ScholarCrossref
8.
Walsh  T McClellan  JM McCarthy  SEAddington  AMPierce  SBCooper  GMNord  ASKusenda  MMalhotra  DBhandari  AStray  SMRippey  CFRoccanova  PMakarov  VLakshmi  BFindling  RLSikich  LStromberg  TMerriman  BGogtay  NButler  PEckstrand  KNoory  LGochman  PLong  RChen  ZDavis  SBaker  CEichler  EEMeltzer  PSNelson  SFSingleton  ABLee  MKRapoport  JLKing  MCSebat  J Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.  Science 2008;320 (5875) 539- 543PubMedGoogle ScholarCrossref
9.
International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase risk of schizophrenia.  Nature 2008;455 (7210) 237- 241PubMedGoogle ScholarCrossref
10.
Kirov  GGumus  DChen  WNorton  NGeorgieva  LSari  MO’Donovan  MCErdogan  FOwen  MJRopers  HHUllmann  R Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.  Hum Mol Genet 2008;17 (3) 458- 465PubMedGoogle ScholarCrossref
11.
Xu  BRoos  JLLevy  Svan Rensburg  EJGogos  JAKarayiorgou  M Strong association of de novo copy number mutations with sporadic schizophrenia.  Nat Genet 2008;40 (7) 880- 885PubMedGoogle ScholarCrossref
12.
Lupski  JR Genomic rearrangements and sporadic disease.  Nat Genet 2007;39 (7) ((suppl)) S43- S47PubMedGoogle ScholarCrossref
13.
Fyer  AJEJManuzza  SKlein  DF Schedule for Affective Disorders and Schizophrenia.  Paris, France INSERM Ed1989;
14.
Lord  CRutter  MLe Couteur  A Autism Diagnostic Interview–Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.  J Autism Dev Disord 1994;24 (5) 659- 685PubMedGoogle ScholarCrossref
15.
Lord  CRisi  SLambrecht  LCook  EH  JrLeventhal  BLDiLavore  PCPickles  ARutter  M The Autism Diagnostic Observation Schedule–Generic: a standard measure of social and communication deficits associated with the spectrum of autism.  J Autism Dev Disord 2000;30 (3) 205- 223PubMedGoogle ScholarCrossref
16.
Schopler  EReichler  RJDeVellis  RFDaly  K Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS).  J Autism Dev Disord 1980;10 (1) 91- 103PubMedGoogle ScholarCrossref
17.
Jacquet  HBerthelot  JBonnemains  CSimard  GSaugier-Veber  PRaux  G Campion  DBonneau  DFrebourg  T The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene.  J Med Genet 2003;40 (1) e7http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12525555. Accessed April 9, 2009PubMedGoogle ScholarCrossref
18.
Durand  CMBetancur  CBoeckers  TMBockmann  JChaste  PFauchereau  FNygren  GRastam  MGillberg  ICAnckarsäter  HSponheim  EGoubran-Botros  HDelorme  RChabane  NMouren-Simeoni  MCde Mas  PBieth  ERogé  BHéron  DBurglen  LGillberg  CLeboyer  MBourgeron  T Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.  Nat Genet 2007;39 (1) 25- 27PubMedGoogle ScholarCrossref
19.
Moessner  RMarshall  CRSutcliffe  JSSkaug  JPinto  DVincent  JZwaigenbaum  LFernandez  BRoberts  WSzatmari  PScherer  SW Contribution of SHANK3 mutations to autism spectrum disorder.  Am J Hum Genet 2007;81 (6) 1289- 1297PubMedGoogle ScholarCrossref
20.
Wilson  HLWong  ACShaw  SRTse  WYStapleton  GAPhelan  MCHu  SMarshall  J McDermid  HE Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms.  J Med Genet 2003;40 (8) 575- 584PubMedGoogle ScholarCrossref
21.
Tzschach  AChen  WErdogan  FHoeller  ARopers  HHCastellan  CUllmann  RSchinzel  A Characterization of interstitial Xp duplications in two families by tiling path array CGH.  Am J Med Genet A 2008;146A (2) 197- 203PubMedGoogle ScholarCrossref
22.
Kirchhoff  MBisgaard  AMDuno  MHansen  FJSchwartz  M A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features.  Eur J Med Genet 2007;50 (4) 256- 263PubMedGoogle ScholarCrossref
23.
Chiyonobu  THayashi  SKobayashi  KMorimoto  MMiyanomae  YNishimura  ANishimoto  AIto  CImoto  ISugimoto  TJia  ZInazawa  JToda  T Partial tandem duplication of GRIA3 in a male with mental retardation.  Am J Med Genet A 2007;143A (13) 1448- 1455PubMedGoogle ScholarCrossref
24.
Shaw-Smith  CPittman  AMWillatt  LMartin  HRickman  LGribble  SCurley  RCumming  SDunn  CKalaitzopoulos  DPorter  KPrigmore  EKrepischi-Santos  ACVarela  MCKoiffmann  CPLees  AJRosenberg  CFirth  HVde Silva  RCarter  NP Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability.  Nat Genet 2006;38 (9) 1032- 1037PubMedGoogle ScholarCrossref
25.
Weiss  LAShen  YKorn  JMArking  DEMiller  DTFossdal  RSaemundsen  EStefansson  HFerreira  MAGreen  TPlatt  OSRuderfer  DMWalsh  CAAltshuler  DChakravarti  ATanzi  REStefansson  KSantangelo  SLGusella  JFSklar  PWu  BLDaly  MJAutism Consortium, Association between microdeletion and microduplication at 16p11.2 and autism.  N Engl J Med 2008;358 (7) 667- 675PubMedGoogle ScholarCrossref
26.
Kumar  RAKaraMohamed  SSudi  JConrad  DFBrune  CBadner  JAGilliam  TCNowak  NJCook  EH  JrDobyns  WBChristian  SL Recurrent 16p11.2 microdeletions in autism.  Hum Mol Genet 2008;17 (4) 628- 638PubMedGoogle ScholarCrossref
27.
Kim  HGKishikawa  SHiggins  AWSeong  ISDonovan  DJShen  YLally  EWeiss  LANajm  JKutsche  KDescartes  MHolt  LBraddock  STroxell  RKaplan  LVolkmar  FKlin  ATsatsanis  KHarris  DJNoens  IPauls  DLDaly  MJMacDonald  MEMorton  CCQuade  BJGusella  JF Disruption of neurexin 1 associated with autism spectrum disorder.  Am J Hum Genet 2008;82 (1) 199- 207PubMedGoogle ScholarCrossref
28.
Zahir  FRBaross  ADelaney  ADEydoux  PFernandes  NDPugh  TMarra  MAFriedman  JM A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1α J Med Genet 2008;45 (4) 239- 243PubMedGoogle ScholarCrossref
29.
Dijkhuizen  Tvan Essen  Tvan der Vlies  PVerheij  JBSikkema-Raddatz  Bvan der Veen  AYGerssen-Schoorl  KBBuys  CHKok  K FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions.  Am J Med Genet A 2006;140 (22) 2482- 2487PubMedGoogle ScholarCrossref
30.
Roohi  JMontagna  CTegay  DHPalmer  LEDeVincent  CPomeroy  JCChristian  SLNowak  NHatchwell  E Disruption of contactin 4 in three subjects with autism spectrum disorder.  J Med Genet 2009;46 (3) 176- 182Google ScholarCrossref
31.
Meins  MHagh  JKGerresheim  FEinhoff  EOlschewski  HStrehl  HEpplen  JT Novel case of dup(3q) syndrome due to a de novo interstitial duplication 3q24-q26.31 with minimal overlap to the dup(3q) critical region.  Am J Med Genet A 2005;132A (1) 84- 89PubMedGoogle ScholarCrossref
32.
Kakinuma  HOzaki  MSato  HTakahashi  H Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).  Am J Med Genet B Neuropsychiatr Genet 2008;147B (6) 973- 975Google ScholarCrossref
33.
Friedman  JIVrijenhoek  TMarkx  SJanssen  IMvan der Vliet  WAFaas  BHKnoers  NVCahn  WKahn  RSEdelmann  LDavis  KLSilverman  JMBrunner  HGvan Kessel  AGWijmenga  COphoff  RAVeltman  JA CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy.  Mol Psychiatry 2008;13 (3) 261- 266PubMedGoogle ScholarCrossref
34.
Klopocki  EFiebig  BRobinson  PTönnies  HErdogan  FRopers  HHMundlos  SUllmann  R A novel 8 Mb interstitial deletion of chromosome 8p12-p21.2.  Am J Med Genet A 2006;140 (8) 873- 877PubMedGoogle ScholarCrossref
35.
Bolton  PFDennis  NRBrowne  CEThomas  NSVeltman  MWThompson  RJJacobs  P The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders.  Am J Med Genet 2001;105 (8) 675- 685PubMedGoogle ScholarCrossref
36.
Cook  EH  JrLindgren  VLeventhal  BLCourchesne  RLincoln  AShulman  CLord  CCourchesne  E Autism or atypical autism in maternally but not paternally derived proximal 15q duplication.  Am J Hum Genet 1997;60 (4) 928- 934PubMedGoogle Scholar
37.
Sharp  AJMefford  HCLi  KBaker  CSkinner  CStevenson  RESchroer  RJNovara  FDe Gregori  MCiccone  RBroomer  ACasuga  IWang  YXiao  CBarbacioru  CGimelli  GBernardina  BDTorniero  CGiorda  RRegan  RMurday  VMansour  SFichera  MCastiglia  LFailla  PVentura  MJiang  ZCooper  GMKnight  SJRomano  CZuffardi  OChen  CSchwartz  CEEichler  EE A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures.  Nat Genet 2008;40 (3) 322- 328PubMedGoogle ScholarCrossref
38.
Chocholska  SRossier  EBarbi  GKehrer-Sawatzki  H Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2-22.3 with a highly variable phenotype in female carriers.  Am J Med Genet A 2006;140 (6) 604- 610PubMedGoogle ScholarCrossref
39.
Kent  LEmerton  JBhadravathi  VWeisblatt  EPasco  GWillatt  LR McMahon  RYates  JR X-linked ichthyosis (steroid sulphatase deficiency) is associated with increased risk of attention deficit hyperactivity disorder, autism and social communication deficits.  J Med Genet 2008;45 (8) 519- 524Google ScholarCrossref
40.
Lawson-Yuen  ASaldivar  JSSommer  SPicker  J Familial deletion within NLGN4 associated with autism and Tourette syndrome.  Eur J Hum Genet 2008;16 (5) 614- 618PubMedGoogle ScholarCrossref
41.
Macarov  MZeigler  MNewman  JPStrich  DSury  VTennenbaum  AMeiner  V Deletions of VCX-A and NLGN4: a variable phenotype including normal intellect.  J Intellect Disabil Res 2007;51 (pt 5) 329- 333PubMedGoogle ScholarCrossref
42.
Jin  HGardner  RJViswesvaraiah  RMuntoni  FRoberts  RG Two novel members of the interleukin-1 receptor gene family, one deleted in Xp22.1-Xp21.3 mental retardation.  Eur J Hum Genet 2000;8 (2) 87- 94PubMedGoogle ScholarCrossref
43.
del Gaudio  DFang  PScaglia  FWard  PACraigen  WJGlaze  DGNeul  JLPatel  ALee  JAIrons  MBerry  SAPursley  AAGrebe  TAFreedenberg  DMartin  RAHsich  GEKhera  JRFriedman  NRZoghbi  HYEng  CMLupski  JRBeaudet  ALCheung  SWRoa  BB Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males.  Genet Med 2006;8 (12) 784- 792PubMedGoogle ScholarCrossref
44.
Casilli  FDi Rocco  ZCGad  STournier  IStoppa-Lyonnet  DFrebourg  TTosi  M Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments.  Hum Mutat 2002;20 (3) 218- 226PubMedGoogle ScholarCrossref
45.
Raux  GBumsel  EHecketsweiler  Bvan Amelsvoort  TZinkstok  JManouvrier-Hanu  SFantini  CBrévière  GMDi Rosa  GPustorino  GVogels  ASwillen  ALegallic  SBou  JOpolczynski  GDrouin-Garraud  VLemarchand  MPhilip  NGérard-Desplanches  ACarlier  MPhilippe  ANolen  MCHeron  DSarda  PLacombe  DCoizet  CAlembik  YLayet  VAfenjar  AHannequin  DDemily  CPetit  MThibaut  FFrebourg  TCampion  D Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome.  Hum Mol Genet 2007;16 (1) 83- 91PubMedGoogle ScholarCrossref
46.
Ohtsuki  TTanaka  SIshiguro  HNoguchi  EArinami  TTanabe  EYara  KOkubo  TTakahashi  SMatsuura  MSakai  TMuto  MKojima  TMatsushima  EToru  MInada  T Failure to find association between PRODH deletion and schizophrenia.  Schizophr Res 2004;67 (1) 111- 113PubMedGoogle ScholarCrossref
47.
Zogopoulos  GHa  KCNaqib  FMoore  SKim  HMontpetit  ARobidoux  FLaflamme  PCotterchio  MGreenwood  CScherer  SWZanke  BHudson  TJBader  GDGallinger  S Germ-line DNA copy number variation frequencies in a large North American population.  Hum Genet 2007;122 (3-4) 345- 353PubMedGoogle ScholarCrossref
48.
Goodman  BKRutberg  JLin  WWPulver  AEThomas  GH Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome.  J Inherit Metab Dis 2000;23 (8) 847- 848PubMedGoogle ScholarCrossref
49.
Bender  HUAlmashanu  SSteel  GHu  CALin  WWWillis  APulver  AValle  D Functional consequences of PRODH missense mutations.  Am J Hum Genet 2005;76 (3) 409- 420PubMedGoogle ScholarCrossref
50.
Jacquet  HDemily  CHouy  EHecketsweiler  BBou  JRaux  GLerond  JAllio  GHaouzir  STillaux  ABellegou  CFouldrin  GDelamillieure  PMénard  JFDollfus  SD’Amato  TPetit  MThibaut  FFrébourg  TCampion  D Hyperprolinemia is a risk factor for schizoaffective disorder.  Mol Psychiatry 2005;10 (5) 479- 485PubMedGoogle ScholarCrossref
51.
Cooper  SASmiley  EMorrison  JAllan  LWilliamson  AFinlayson  JJackson  AMantry  D Psychosis and adults with intellectual disabilities: prevalence, incidence, and related factors.  Soc Psychiatry Psychiatr Epidemiol 2007;42 (7) 530- 536PubMedGoogle ScholarCrossref
52.
Fombonne  E The epidemiology of autism: a review.  Psychol Med 1999;29 (4) 769- 786PubMedGoogle ScholarCrossref
53.
Stefansson  HRujescu  DCichon  SPietiläinen  OPIngason  ASteinberg  SFossdal  RSigurdsson  ESigmundsson  TBuizer-Voskamp  JEHansen  TJakobsen  KDMuglia  PFrancks  CMatthews  PMGylfason  AHalldorsson  BVGudbjartsson  DThorgeirsson  TESigurdsson  AJonasdottir  AJonasdottir  ABjornsson  AMattiasdottir  SBlondal  THaraldsson  MMagnusdottir  BBGiegling  IMöller  HJHartmann  AShianna  KVGe  DNeed  ACCrombie  CFraser  GWalker  NLonnqvist  JSuvisaari  JTuulio-Henriksson  APaunio  TToulopoulou  TBramon  EDi Forti  MMurray  RRuggeri  MVassos  ETosato  SWalshe  MLi  TVasilescu  CMühleisen  TWWang  AGUllum  HDjurovic  SMelle  IOlesen  J Kiemeney  LAFranke  BSabatti  CFreimer  NBGulcher  JRThorsteinsdottir  UKong  AAndreassen  OAOphoff  RAGeorgi  ARietschel  MWerge  TPetursson  HGoldstein  DBNöthen  MMPeltonen  LCollier  DASt Clair  DStefansson  K Large recurrent microdeletions associated with schizophrenia.  Nature 2008;455 (7210) 232- 236PubMedGoogle ScholarCrossref
54.
Mefford  HCSharp  AJBaker  CItsara  AJiang  ZBuysse  KHuang  SMaloney  VKCrolla  JABaralle  DCollins  AMercer  CNorga  Kde Ravel  TDevriendt  KBongers  EMde Leeuw  NReardon  WGimelli  SBena  FHennekam  RCMale  AGaunt  LClayton-Smith  JSimonic  IPark  SMMehta  SGNik-Zainal  SWoods  CGFirth  HVParkin  GFichera  MReitano  SLo Giudice  MLi  KECasuga  IBroomer  AConrad  BSchwerzmann  MRäber  LGallati  SStriano  PCoppola  ATolmie  JLTobias  ESLilley  CArmengol  LSpysschaert  YVerloo  PDe Coene  AGoossens  LMortier  GSpeleman  Fvan Binsbergen  ENelen  MRHochstenbach  RPoot  MGallagher  LGill  M McClellan  JKing  MCRegan  RSkinner  CStevenson  REAntonarakis  SEChen  CEstivill  XMenten  BGimelli  GGribble  SSchwartz  SSutcliffe  JSWalsh  TKnight  SJSebat  JRomano  CSchwartz  CEVeltman  JAde Vries  BBVermeesch  JRBarber  JCWillatt  LTassabehji  MEichler  EE Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes.  N Engl J Med 2008;359 (16) 1685- 1699PubMedGoogle ScholarCrossref
Original Article
September 2009

Recurrent Rearrangements in Synaptic and Neurodevelopmental Genes and Shared Biologic Pathways in Schizophrenia, Autism, and Mental Retardation

Author Affiliations

Author Affiliations: Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 614, Institut Hospitalo-Universitaire de Recherche Biomédicale (Drs Guilmatre, Mosca, Frébourg, Saugier Veber, and Campion and Ms Legallic), Department of Research, Centre Hospitalier de Saint Etienne du Rouvray (Drs Le Vacon and Campion), and Department of Genetics, University Hospital (Drs Goldenberg, Drouin-Garraud, Joly-Helas, Frébourg, and Saugier Veber), Rouen, Unité Mixte de Recherche 6061, Centre National de Recherche Scientifique, University of Rennes I (Drs Dubourg, David, and Bendavid), and Department of Genetics, University Hospital (Dr Odent), Rennes, Department of Genetics, Groupe Hospitalier du Havre, Le Havre (Dr Layet), Centre de Ressources Autisme de Haute Normandie, Saint Etienne du Rouvray (Dr Rosier), Department of Genetics, University Hospital, and Unité Mixte de Recherche 930 Centre National de Recherche Scientifique, Orléans (Dr Briault), INSERM Unité 930, University Hospital Bretonneau, University François-Rabelais (Drs Bonnet-Brilhault, Laumonnier, and Barthelemy), and INSERM Unité 619 (Dr Andres), Tours, and Department of Genetics (Drs Mosca and Faivre) and Centre de Ressources Autisme de Bourgogne, Childrens Hospital (Drs Pinoit and Henry), University Hospital, Dijon, France; and Department of Medical and Surgical Pediatrics, University Hospital, Messina, Italy (Drs Impallomeni, Germano, Tortorella, and Di Rosa).

Arch Gen Psychiatry. 2009;66(9):947-956. doi:10.1001/archgenpsychiatry.2009.80
Abstract

Context  Results of comparative genomic hybridization studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the cause of mental retardation, autism spectrum disorders, and schizophrenia.

Objectives  To provide an estimate of the collective frequency of a set of recurrent or overlapping CNVs in 3 different groups of cases compared with healthy control subjects and to assess whether each CNV is present in more than 1 clinical category.

Design  Case-control study.

Setting  Academic research.

Participants  We investigated 28 candidate loci previously identified by comparative genomic hybridization studies for gene dosage alteration in 247 cases with mental retardation, in 260 cases with autism spectrum disorders, in 236 cases with schizophrenia or schizoaffective disorder, and in 236 controls.

Main Outcome Measures  Collective and individual frequencies of the analyzed CNVs in cases compared with controls.

Results  Recurrent or overlapping CNVs were found in cases at 39.3% of the selected loci. The collective frequency of CNVs at these loci is significantly increased in cases with autism, in cases with schizophrenia, and in cases with mental retardation compared with controls (P < .001, P = .01, and P = .001, respectively, Fisher exact test). Individual significance (P = .02 without correction for multiple testing) was reached for the association between autism and a 350-kilobase deletion located at 22q11 and spanning the PRODH and DGCR6 genes.

Conclusions  Weakly to moderately recurrent CNVs (transmitted or occurring de novo) seem to be causative or contributory factors for these diseases. Most of these CNVs (which contain genes involved in neurotransmission or in synapse formation and maintenance) are present in the 3 pathologic conditions (schizophrenia, autism, and mental retardation), supporting the existence of shared biologic pathways in these neurodevelopmental disorders.

The development of microarray-based technologies for comparative genomic hybridization (array-CGH) analysis has enabled the detection of submicroscopic microdeletions or microduplications, also referred to as copy number variations (CNVs). Recently, this approach has been widely used in neurologic and psychiatric disorders, including mental retardation (MR),1-3 autism spectrum disorders (ASDs),4-7 and schizophrenia.8-11 Findings from these studies suggested that several genes involved in similar neurodevelopmental pathways may be associated with these conditions. However, so far only rare structural variants, sometimes present in a single case, have been identified. Therefore, it is difficult to decipher which of these variations are causative, which are risk factors, and which are only rare polymorphisms unrelated to any pathologic phenotype. De novo rearrangements are usually considered pathogenic, but this argument (which is acceptable for rare large rearrangements detectable by conventional cytogenetics) should be considered with caution for smaller CNVs, for which a high mutation rate is expected. Indeed, it has been estimated that a de novo segmental deletion occurs in 1 per 8 newborns and a de novo segmental duplication in 1 per 50 newborns, with most of these rearrangements being benign polymorphic variants.12 Therefore, the disease association of CNVs has to be tested systematically by comparing the frequency of each candidate CNV in cases and in healthy control subjects. Given the low frequency of each CNV, this would require the study of huge series, achievable only in the context of forthcoming meta-analyses. Other problems arise because ascertainment of most of the published samples, initially recruited for linkage studies, is biased toward multiplex cases and because control samples, when present, are generally composed of subjects not screened for the studied pathologic conditions. The objectives of the present study were (1) to provide an estimate of the collective frequency of a set of recurrent or overlapping CNVs in 3 different groups of cases compared with controls and (2) to assess whether each CNV is present in more than 1 clinical category.

Methods
Ascertainment and diagnoses

Cases with schizophrenia and cases with MR were ascertained at University Hospital, Rouen, France, from consecutive hospitalizations in patients with schizophrenia or from consecutive referrals for phenotypic and genetic investigations in patients with intellectual disability. The ASD sample included cases ascertained from consecutive consultations at 4 units specializing in autism diagnosis and evaluation located in Rouen, Tours, and Dijon (France) and in Messina (Italy), as well as cases directly referred by the French Autism Foundation. Controls, all ascertained at University Hospital, Rouen, were screened using a standardized data sheet derived from the Schedule for Affective Disorders and Schizophrenia13 and were required to be free of any psychotic disorder or MR themselves or in their first-degree relatives. All psychiatric diagnoses were established according to DSM-IV criteria following review of case notes and direct examination of cases. The Schedule for Affective Disorders and Schizophrenia13 was used for the clinical assessment of all cases with schizophrenia or schizoaffective disorder. The Autism Diagnostic Interview–Revised,14 the Autism Diagnostic Observation Schedule–Generic,15 or the Childhood Autism Rating Scale16 was used for 83.0% of cases with ASDs (100.0% of cases having ASDs with CNVs). Evaluation of IQs was performed using standardized neuropsychological tests (ie, validated mental age–appropriate Weschler scales [Wechsler Preschool and Primary Scale of Intelligence, Wechsler Intelligence Scale for Children, or Wechsler Adult Intelligence Scale]).

The schizophrenia group included 189 cases with schizophrenia and 47 cases with schizoaffective disorder. Postmorbid IQs were available for two-thirds of cases with schizophrenia; 18.0% of these cases had an IQ lower than 70. The ASD group included 257 cases with autism and 3 cases with Asperger syndrome. The MR group included 235 cases with MR and 12 cases with developmental language disorder. All cases with MR and two-thirds of cases with ASDs were examined by an experienced clinical geneticist (A.G., V.D.-G., V.L., F.B.-B., S.O., L.F., or G.D.R.) and were screened for fragile X mutation and karyotype abnormalities. Cases with large chromosomal anomalies, fragile X syndrome, or other established syndromes were excluded. Cases with common environmental causes of MR such as fetal alcohol syndrome or birth complications were also excluded. Additional clinical features, including intrauterine or postnatal growth retardation and dysmorphic features or malformations, were present in 8.5% of cases with ASDs and in 62.0% of cases with MR. Demographic characteristics of the sample, including 979 unrelated white non-Hispanic subjects from France or Italy, are summarized in Table 1.

After written informed consent, blood samples were drawn from all included participants and whenever possible from parents and affected relatives of cases. Ethics committee approval was obtained from all regions where families were recruited.

Candidate genes and analysis by quantitative multiplex polymerase chain reaction of short fluorescent fragments

A MEDLINE search using the terms CNV, schizophrenia, autism, and mental retardation allowed us to select nonexhaustively a set of 28 loci with microrearrangements characterized by prior array-CGH analyses, often in a single case. This set included major candidate CNV loci identified in cases with ASDs and schizophrenia before April 2008, as well as 8 functionally related CNV loci identified in MR (Table 2). Each locus generally contained a single disease–associated CNV, but in some cases, overlapping CNVs with different boundaries had been described in cases. The gene content of these loci ranged from 1 to 28. At each locus, at least 1 candidate gene had been previously suggested in the seminal studies and was retained for the present analysis. Functionally, most of these candidate genes can be classified in 2 main categories related to synapse formation and maintenance or to neurotransmission.

Copy number variation at each locus was assessed by quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF), a method based on the simultaneous amplification of several short genomic fragments under quantitative conditions.44 For each locus, amplicons were designed in the coding sequence of selected candidate genes. All assays were grouped in 3 multiplex PCR experiments that included 10 short genomic fragments (range, 100-301 base pair) each. Primer sequences and PCR conditions are summarized in eTable 1(http://www.archgenpsychiatry.com. DNA fragments generated by QMPSF were separated on a sequencer (ABI Prism 3100; Applied Biosystems, Norwalk, Connecticut), and the resulting fluorescence profiles were analyzed using commercially available software (Gene Scan 3.7 software; Applied Biosystems). For each case, the QMPSF profile was superimposed on that generated from a control by adjusting the same level that the peak obtained for a control amplicon corresponding to a short exonic fragment of the PBGD gene. When a CNV was detected, further analyses aiming to confirm and delineate the size of the rearrangements were performed using additional dedicated QMPSF assays (eFigure 1), array-CGH, or fluorescence in situ hybridization analyses.

Oligonucleotide array-cgh

Oligonucleotide array-CGH was performed using a commercially available array (human genome CGH microarray 4 × 44 K) (Agilent Technologies, Santa Clara, California). This array contains 60-mer oligonucleotide probes (n = 44 290) covering the whole genome, with a mean spatial resolution of approximately 30 to 35 kilobases (kb). Eighty-four percent of the probes reside in intragenic regions, and more than 30 000 genes are each represented by at least 1 probe. All experiments were performed using the June 2006 version of the protocol (version 4.0, Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis; Agilent Technologies).

Fluorescence in situ hybridization

Fluorescence in situ hybridization analyses were performed on metaphase spreads obtained from peripheral lymphocytes from the cases. Selected human genomic bacterial artificial chromosome clones were obtained from a distribution center (BACPAC Resources Center, Oakland, California [http://bacpac.chori.org]).

Dna sequencing and paternity checking

Sequence analysis of the coding exons of the PRODH (OMIM_606810)) gene was performed using primers and PCR conditions previously described45 via an automated sequencer (model 3100; Applied Biosystems). Paternity was checked by microsatellite typing.

Determination of plasma proline level

Plasma proline levels in cases were determined after overnight fasting. All samples were analyzed using ion exchange chromatography (LC 3000 system; Biotronik, Maintal, Germany).

Statistical analysis

Categorical variables were compared using the Fisher exact test. Two hypotheses were tested. First, the distribution of the collective set of recurrent or overlapping CNVs found in each disease group of cases was compared with that found in controls (3 tests). Second, the distribution of each recurrent or overlapping CNV present in our population was compared between each disease group of cases and controls (33 tests). P values are reported without Bonferroni correction.

Results
DISEASE-ASSOCIATED CNVs

Among 743 cases, the proportion of recurrent or overlapping CNVs identified among 28 selected loci (Table 2) was 11 of 28 (39.3%). Their collective frequency was 10 per 236 cases with schizophrenia (4.2%), 16 per 260 cases with ASDs (6.2%), and 13 per 247 cases with MR (5.3%) vs 1 per 236 controls (0.4%), demonstrating a significant excess of these CNVs in each disease group compared with controls (P = .01, P < .001, and P = .001, respectively, Fisher exact test) (Table3, eTable 2, and eTable 3). None of the cases had more than 1 of the 28 CNVs. Only 1 CNV identical to a previously described disease-associated CNV (ie, a 350-kb deletion located at 22q11 spanning the PRODH and DGCR6 (OMIM_601279)) genes)17 was detected in the control group. This deletion, present in a single control, had a low frequency (1 per 236 controls) similar to that previously reported in Japanese46 and Canadian47 populations. Individual significance for the association with ASDs was reached for this PRODH/DGCR6 deletion (9 per 260 cases with ASDs vs 1 per 236 controls [P = .02]).

Among the 4 most prevalent CNVs, 3 (located at 22q11, 16p11, and 15q13) were flanked by known regions of segmental duplication and resulted most likely from a nonallelic homologous recombination mechanism. At the 2p16 locus, the NRXN1 gene was recurrently disrupted by a set of partially overlapping deletions spanning the promoter and first exons of neurexin 1α or the exons coding for the middle section of this protein, as well as for the proximal region of neurexin 1β. These rearrangements occurred in a region devoid of any segmental duplication and resulted from another mechanism distinct from a nonallelic homologous recombination mechanism.

Transmission and cosegregation in multiplex sibships

Among 27 families in which transmission was tested (69.2% of families with CNVs), 8 CNVs (located at 8p23, 15q11-q13, 15q13, 16p11, and 22q13) had occurred de novo (Table 3). The mean (SD) paternal age was not significantly different between families with de novo and inherited CNVs (27.2 [4.7] vs 30.7 [4.6] years; P = .19, Mann-Whitney test). In most families, CNVs were transmitted from an apparently nonaffected (although not clinically or neuropsychologically assessed) parent. This includes a partial duplication of the X-linked GRIA3 gene, present in a young male case with autism, which was inherited from the nonaffected mother. The 350-kb deletion located at 22q11 spanning the PRODH/DGCR6 locus was also transmitted in 11 of 11 tested cases. PRODH encodes for proline dehydrogenase, and PRODH deficiency is responsible for type 1 hyperprolinemia, a condition often associated with cognitive impairment and with psychotic symptoms.45 However, hemizygous deletion of the PRODH gene is insufficient per se to result in hyperprolinemia, as only 35% to 50% of cases with velocardiofacial syndrome, all bearing a single copy of PRODH, exhibit hyperprolinemia.45,48 Indeed, a reduction of more than 50% of the enzymatic activity is generally required to produce hyperprolinemia.45 Therefore, the presence of a mutation affecting enzyme activity49 on the second allele is necessary. To examine this issue, the remaining PRODH allele was sequenced in all cases bearing the 350-kb deletion, and the plasma proline level was assessed whenever possible. As summarized in Table 4, 14 of 15 cases harbored a genotype predicted to result in a reduction of at least 70% of enzymatic activity. Among 12 cases from whom the plasma proline level was assessed, 9 had mild to severe hyperprolinemia, and 3 had plasma proline levels at the upper boundary of normal values.

Cosegregation of the CNV with pathologic conditions was examined in 4 multiplex families in which DNA from affected siblings was available. In family 144 (Tables 3 and 4), the 2 sibs with schizophrenia or schizoaffective disorder harbored the PRODH/DGCR6 deletion. In family 11 695 (Table 3), the 2 MR sibs harbored the 2p16.3 deletion. In family 14 390 (Table 3), the 16p11 deletion was present in the proband with developmental language disorder but not in his sib with MR. In family 33 (Table 3), the 16p11 duplication was present in 2 sibs with schizophrenia and in a nonaffected sibling but was absent in a third sibling with schizoaffective disorder (eFigure 2).

Disease specificity

Combining the results of the present study and previous findings, none of the observed rearrangements were disease specific, with the possible exception of the maternally derived 15q13 duplication associated with ASDs. The 22q1117 and 2p161 deletions were found in the 3 conditions, whereas the 22q13 deletion in 2 cases with ASDs had already been described in ASDs and in MR.4,18-20 The 16p11 and 8p23 rearrangements previously described in ASDs4,5 were found in cases with schizophrenia, and the 16p11 rearrangement was found in cases with MR. The Xp11.4 duplication spanning the TSPAN7 gene, previously described in MR and in ASDs,4,21 was found in a case with schizophrenia, as well as the 17q21 duplication previously described in a patient with MR.22 Two different-sized 15q13 duplications that included APBA2 were found in 1 case with ASDs and in 1 case with schizophrenia. A partial duplication of the GRIA3 gene, including the promoter region and the exons coding for the proximal region of GRIA3, was detected in a single case with autism. Although slightly different based on its size and the number of duplicated exons, this partial duplication is reminiscent of that recently reported in a patient with MR.23 At the 8p23 locus, gain and loss of material were found, as well as at the 16p11 and 17q21 loci, as recently described.22,24,25 This suggests that dosage-sensitive genes, whose expression is finely tuned, are located within these rearranged segments.

Comorbidity

From a phenotypic viewpoint, 3 of 9 cases with schizophrenia bearing a candidate CNV had mild MR in an IQ assessment obtained after the onset of their psychotic symptoms (Table 3). No premorbid IQ was available for any case. Although postmorbid IQ likely constitutes an underestimation of the premorbid level of cognitive functioning in cases with schizophrenia, cognitive deficits manifest by severe learning disorders and failure to follow normal schooling were already noted in these 3 cases during childhood before the onset of their psychotic symptoms, supporting the comorbid diagnosis of MR and schizophrenia. In cases with potential MR (case 144.1 [Table 3] and cases 313 and 33.1 [Table 3]), psychotic features appeared at ages 25, 18, and 27 years, respectively, and included prominent positive symptoms such as persecutory delusions, thought insertions, delusions of being controlled, and auditory hallucinations with voices making insulting statements. The 3 cases had marked behavioral disorders such as aggressiveness and psychomotor agitation. Mood instability and suicidal ideation were present in case 144.1. The 3 cases were considered good responders to atypical neuroleptic drug therapy. Initial symptoms gradually declined, and the course of the disease was marked by social isolation, blunted affects, and loosening of associations. These cases are living in long-term institutions.

Except for 2 cases who had normal cognitive functioning (high-functioning autism), all tested CNV-bearing cases with autism had IQs in the range of MR, although case T35 had only mild cognitive dysfunction (Table 3). In 2 cases with high-functioning autism (cases 12 746 [Tables 3 and 4] and 44 813 [Table 3], aged 6 and 8 years, respectively), onset was in the first year of life, when the parents noticed few gestures, almost no babbling, and poor shifting gazes. Subsequently, the cases acquired spoken language, although with significant delay. They are able to carry on conversation, carry out commands, imitate, and dress and groom themselves. They participate in public school with adapted educative programs. However, they remain impaired in their communicative and social skills, and their use of language is often inappropriate. Both cases have developed ritualistic behaviors and show restricted patterns of interest.

OTHER CNVs

In addition to the set of CNVs tested for recurrence in this study, 2 reciprocal rearrangements, previously unassociated with any psychiatric condition, were incidentally observed at 2 loci. Both were benign polymorphisms. A common CNV reciprocal to the expected one (ie, a 350-kb duplication) was found at the 22 q11 locus in 6 of 236 controls, as well as in 7 of 236 cases with schizophrenia, 4 of 260 cases with ASDs, and 9 of 247 cases with MR. Another overlapping reciprocal CNV (ie, a 490-kb duplication) was detected at the CHRNA7 locus located on chromosome 15q13.3. This CNV was present in 2 of 236 controls, in 1 of 236 cases with schizophrenia, in 1 of 260 cases with ASDs, and in 1 of 247 cases with MR and was unrelated to any pathologic condition (eTable 2).

Comment

After a first wave of CNV discovery by array-CGH analyses in neuropsychiatric disorders, this study for the first time (to our knowledge) examines the involvement of a limited number of candidate loci in large samples of cases with different clinical diagnoses. Two strengths of our study design are (1) the inclusion of controls carefully screened for the studied pathologic conditions and of series of cases mostly ascertained through consecutive admissions or consultations and, therefore, (2) the inclusion of cases belonging to simplex or multiplex families. Given the expected rarity of each variant, our first goal was not to test the association of every individual CNV with schizophrenia, ASDs, or MR but to determine whether these variants were collectively more frequent in cases with these diseases than among controls. This aim was successfully achieved, and we were able to obtain suggestive statistical significance for the association between the 350-kb deletion located at 22q11 and ASDs. This deleted segment, located within the chromosomal region deleted in velocardiofacial syndrome (a contiguous gene syndrome known to be associated with a high frequency of MR, ASDs, and psychosis), contained the 2 genes PRODH and DGCR6. Although we cannot exclude an involvement of DGCR6 in the neuropsychiatric phenotype of the cases bearing this CNV, previous work from our group strongly suggests that PRODH is the prime candidate.45 It was previously shown that hyperprolinemia, resulting from partial or total inactivation of this enzyme, (1) may lead to MR and autism in patients with type 1 hyperprolinemia,45 (2) is a risk factor for schizoaffective disorder,50 and (3) is inversely correlated with IQ in velocardiofacial syndrome.45 Herein, we show that all cases except 1 harboring this deletion were compound heterozygotes, also bearing mutations affecting enzymatic activity on the second allele. This resulted in a loss of at least 70% of the predicted PRODH residual activity in 14 of 15 assessed cases and resulted in hyperprolinemia in 9 of 12 assessed cases.

Second, we show that de novo CNVs and CNVs inherited from an apparently healthy parent can be found in cases. For transmitted CNVs, the mode of inheritance of the disease was recessive in some cases (eg, hyperprolinemia related to the 22q11 deletion) or implied the transmission of an X-linked gene (GRIA3) by a woman to her son. Consistent with findings in previous studies,4,8,26 the 16p11 rearrangements were inherited from an apparently nonaffected parent in 3 families. These CNVs, whose estimated frequency in the Icelandic population was 5 per 18 834 (0.03%) for the duplication and 2 per 18 834 (0.01%) for the deletion,25 should be considered risk factors rather than fully causative variations. The presence of affected siblings that do not share the CNV, already noted in a previous study,26 does not necessarily rule out the causative implication of these CNVs but raises the question of intrafamilial genetic heterogeneity. This hypothesis, which is plausible for these frequent disorders that are often characterized by assortative mating, remains speculative because the parents and their relatives were not psychiatrically or cognitively assessed in these families.

Third and most important, our study confirms and extends recent evidence suggesting that many candidate CNVs are not disease specific but are involved in the expression of different behavioral phenotypes, including MR, ASDs, and schizophrenia. This implies the existence of shared biologic pathways in these 3 neurodevelopmental conditions. These pathways chiefly affect synapse formation and maintenance, as well as neurotransmission (with a special emphasis on glutamate and γ-aminobutyric acid). The dysfunction of specific neuronal networks underlying the particular symptoms of each clinical condition most likely depends on additional genetics, epigenetics, and environmental factors that remain to be characterized. From a clinical point of view, despite the diversity of categorical diagnoses, many cases harboring these CNVs shared some clinical features: one-third of cases with schizophrenia and 83.3% of cases with autism having CNVs had a level of cognitive functioning in the range of MR. This is in accord with previous studies showing that point prevalence of schizophrenia is increased by a factor of 3 in cases with intellectual disabilities51 and that 50% of cases with autism have MR.52 However, the following 2 caveats should be noted: (1) because attention and communication are markedly impaired in children with autism, assessment of their IQs (even performance IQs in nonverbal cases) is unreliable, and (2) these results were not obtained in a single community–based population but in 3 disease groups ascertained according to different schemes, a factor whose effect is difficult to appreciate but which is likely to have implications related to the phenotypic severity in these cases.

Fourth, targeted procedures for CNV analysis such as the QMPSF method is a cost-effective alternative to array-CGH for the screening of candidate loci in large case-control cohorts. We plan to conduct extensive resequencing of these candidate genes to further validate their role in these conditions.

Since our submission of this article for publication, additional studies9,11,53,54 have been published documenting shared CNVs between MR, ASDs, and schizophrenia.

Correspondence: Dominique Campion, MD, PhD, Institut National de la Santé et de la Recherche Médicale, Unité 614, Institut Hospitalo-Universitaire de Recherche Biomédicale, 22 Blvd Gambetta, 76000 Rouen, France (dominique.campion@univ-rouen.fr).

Submitted for Publication: August 5, 2008; final revision received February 6, 2009; accepted February 23, 2009.

Author Contributions: Dr Campion had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosure: None reported.

Funding/Support: This study was supported by the Fondation de France, by Collaborative Biologic Resources From the Autism Foundation (RBCFA), and by the French Autism Foundation. Dr Guilmatre received a fellowship from Region Haute Normandie, and Dr Mosca received a fellowship from the Académie Nationale de Médecine.

Role of the Sponsors: We acknowledge the usefulness of the available resources from the RBCFA and from the families involved in the RBCFA. RBCFA is a program of the French Autism Foundation, which is recognized to be of public usefulness, was created by parents of autistic patients, and whose scientific director is Sylvain Briault, MD, PhD, researcher at the INSERM.

Additional Contributions: Technical support for the transcriptomic platform was provided by OUEST Genopole and by Genethon. We thank our colleagues who helped to identify patients, as well as the patients and their families for their participation.

References
1.
Friedman  JMBaross  ADelaney  ADAlly  AArbour  LArmstrong  LAsano  JBailey  DKBarber  SBirch  PBrown-John  MCao  MChan  SCharest  DLFarnoud  NFernandes  NFlibotte  SGo  AGibson  WTHolt  RAJones  SJKennedy  GCKrzywinski  MLanglois  SLi  HI McGillivray  BCNayar  TPugh  TJRajcan-Separovic  ESchein  JESchnerch  ASiddiqui  AVan Allen  MIWilson  GYong  SLZahir  FEydoux  PMarra  MA Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation [published correction appears in Am J Hum Genet. 2006;79(6):1135].  Am J Hum Genet 2006;79 (3) 500- 513PubMedGoogle ScholarCrossref
2.
Froyen  GVan Esch  HBauters  MHollanders  KFrints  SGVermeesch  JRDevriendt  KFryns  JPMarynen  P Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes.  Hum Mutat 2007;28 (10) 1034- 1042PubMedGoogle ScholarCrossref
3.
Menten  BMaas  NThienpont  BBuysse  KVandesompele  JMelotte  Cde Ravel  TVan Vooren  SBalikova  IBackx  LJanssens  SDe Paepe  ADe Moor  BMoreau  YMarynen  PFryns  JPMortier  GDevriendt  KSpeleman  FVermeesch  JR Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports.  J Med Genet 2006;43 (8) 625- 633PubMedGoogle ScholarCrossref
4.
Marshall  CRNoor  AVincent  JBLionel  ACFeuk  LSkaug  JShago  MMoessner  RPinto  DRen  YThiruvahindrapduram  BFiebig  ASchreiber  SFriedman  JKetelaars  CEVos  YJFicicioglu  CKirkpatrick  SNicolson  RSloman  LSummers  AGibbons  CATeebi  AChitayat  DWeksberg  RThompson  AVardy  CCrosbie  VLuscombe  SBaatjes  RZwaigenbaum  LRoberts  WFernandez  BSzatmari  PScherer  SW Structural variation of chromosomes in autism spectrum disorder.  Am J Hum Genet 2008;82 (2) 477- 488PubMedGoogle ScholarCrossref
5.
Sebat  JLakshmi  BMalhotra  DTroge  JLese-Martin  CWalsh  TYamrom  BYoon  SKrasnitz  AKendall  JLeotta  APai  DZhang  RLee  YHHicks  JSpence  SJLee  ATPuura  KLehtimäki  TLedbetter  DGregersen  PKBregman  JSutcliffe  JSJobanputra  VChung  WWarburton  DKing  MCSkuse  DGeschwind  DHGilliam  TCYe  KWigler  M Strong association of de novo copy number mutations with autism.  Science 2007;316 (5823) 445- 449PubMedGoogle ScholarCrossref
6.
Christian  SLBrune  CWSudi  JKumar  RALiu  SKaramohamed  SBadner  JAMatsui  SConroy  J McQuaid  DGergel  JHatchwell  EGilliam  TCGershon  ESNowak  NJDobyns  WBCook  EH  Jr Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder.  Biol Psychiatry 2008;63 (12) 1111- 1117PubMedGoogle ScholarCrossref
7.
Szatmari  PPaterson  ADZwaigenbaum  LRoberts  WBrian  JLiu  XQVincent  JBSkaug  JLThompson  APSenman  LFeuk  LQian  CBryson  SEJones  MBMarshall  CRScherer  SWVieland  VJBartlett  CMangin  LVGoedken  RSegre  APericak-Vance  MACuccaro  MLGilbert  JRWright  HHAbramson  RKBetancur  CBourgeron  TGillberg  CLeboyer  MBuxbaum  JDDavis  KLHollander  ESilverman  JMHallmayer  JLotspeich  LSutcliffe  JSHaines  JLFolstein  SEPiven  JWassink  THSheffield  VGeschwind  DHBucan  MBrown  WTCantor  RMConstantino  JNGilliam  TCHerbert  MLajonchere  CLedbetter  DHLese-Martin  CMiller  JNelson  SSamango-Sprouse  CASpence  SState  MTanzi  RECoon  HDawson  GDevlin  BEstes  AFlodman  PKlei  L McMahon  WMMinshew  NMunson  JKorvatska  ERodier  PMSchellenberg  GDSmith  MSpence  MAStodgell  CTepper  PGWijsman  EMYu  CERogé  BMantoulan  CWittemeyer  KPoustka  AFelder  BKlauck  SMSchuster  CPoustka  FBölte  SFeineis-Matthews  SHerbrecht  ESchmötzer  GTsiantis  JPapanikolaou  KMaestrini  EBacchelli  EBlasi  FCarone  SToma  CVan Engeland  Hde Jonge  MKemner  CKoop  FLangemeijer  MHijmans  CStaal  WGBaird  GBolton  PFRutter  MLWeisblatt  EGreen  JAldred  CWilkinson  JAPickles  ALe Couteur  ABerney  T McConachie  HBailey  AJFrancis  KHoneyman  GHutchinson  AParr  JRWallace  SMonaco  APBarnby  GKobayashi  KLamb  JASousa  ISykes  NCook  EHGuter  SJLeventhal  BLSalt  JLord  CCorsello  CHus  VWeeks  DEVolkmar  FTauber  MFombonne  EShih  AMeyer  KJAutism Genome Project Consortium, Mapping autism risk loci using genetic linkage and chromosomal rearrangements [published correction appears in Nat Genet. 2007;39(10):1285].  Nat Genet 2007;39 (3) 319- 328PubMedGoogle ScholarCrossref
8.
Walsh  T McClellan  JM McCarthy  SEAddington  AMPierce  SBCooper  GMNord  ASKusenda  MMalhotra  DBhandari  AStray  SMRippey  CFRoccanova  PMakarov  VLakshmi  BFindling  RLSikich  LStromberg  TMerriman  BGogtay  NButler  PEckstrand  KNoory  LGochman  PLong  RChen  ZDavis  SBaker  CEichler  EEMeltzer  PSNelson  SFSingleton  ABLee  MKRapoport  JLKing  MCSebat  J Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.  Science 2008;320 (5875) 539- 543PubMedGoogle ScholarCrossref
9.
International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase risk of schizophrenia.  Nature 2008;455 (7210) 237- 241PubMedGoogle ScholarCrossref
10.
Kirov  GGumus  DChen  WNorton  NGeorgieva  LSari  MO’Donovan  MCErdogan  FOwen  MJRopers  HHUllmann  R Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.  Hum Mol Genet 2008;17 (3) 458- 465PubMedGoogle ScholarCrossref
11.
Xu  BRoos  JLLevy  Svan Rensburg  EJGogos  JAKarayiorgou  M Strong association of de novo copy number mutations with sporadic schizophrenia.  Nat Genet 2008;40 (7) 880- 885PubMedGoogle ScholarCrossref
12.
Lupski  JR Genomic rearrangements and sporadic disease.  Nat Genet 2007;39 (7) ((suppl)) S43- S47PubMedGoogle ScholarCrossref
13.
Fyer  AJEJManuzza  SKlein  DF Schedule for Affective Disorders and Schizophrenia.  Paris, France INSERM Ed1989;
14.
Lord  CRutter  MLe Couteur  A Autism Diagnostic Interview–Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.  J Autism Dev Disord 1994;24 (5) 659- 685PubMedGoogle ScholarCrossref
15.
Lord  CRisi  SLambrecht  LCook  EH  JrLeventhal  BLDiLavore  PCPickles  ARutter  M The Autism Diagnostic Observation Schedule–Generic: a standard measure of social and communication deficits associated with the spectrum of autism.  J Autism Dev Disord 2000;30 (3) 205- 223PubMedGoogle ScholarCrossref
16.
Schopler  EReichler  RJDeVellis  RFDaly  K Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS).  J Autism Dev Disord 1980;10 (1) 91- 103PubMedGoogle ScholarCrossref
17.
Jacquet  HBerthelot  JBonnemains  CSimard  GSaugier-Veber  PRaux  G Campion  DBonneau  DFrebourg  T The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene.  J Med Genet 2003;40 (1) e7http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12525555. Accessed April 9, 2009PubMedGoogle ScholarCrossref
18.
Durand  CMBetancur  CBoeckers  TMBockmann  JChaste  PFauchereau  FNygren  GRastam  MGillberg  ICAnckarsäter  HSponheim  EGoubran-Botros  HDelorme  RChabane  NMouren-Simeoni  MCde Mas  PBieth  ERogé  BHéron  DBurglen  LGillberg  CLeboyer  MBourgeron  T Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.  Nat Genet 2007;39 (1) 25- 27PubMedGoogle ScholarCrossref
19.
Moessner  RMarshall  CRSutcliffe  JSSkaug  JPinto  DVincent  JZwaigenbaum  LFernandez  BRoberts  WSzatmari  PScherer  SW Contribution of SHANK3 mutations to autism spectrum disorder.  Am J Hum Genet 2007;81 (6) 1289- 1297PubMedGoogle ScholarCrossref
20.
Wilson  HLWong  ACShaw  SRTse  WYStapleton  GAPhelan  MCHu  SMarshall  J McDermid  HE Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms.  J Med Genet 2003;40 (8) 575- 584PubMedGoogle ScholarCrossref
21.
Tzschach  AChen  WErdogan  FHoeller  ARopers  HHCastellan  CUllmann  RSchinzel  A Characterization of interstitial Xp duplications in two families by tiling path array CGH.  Am J Med Genet A 2008;146A (2) 197- 203PubMedGoogle ScholarCrossref
22.
Kirchhoff  MBisgaard  AMDuno  MHansen  FJSchwartz  M A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features.  Eur J Med Genet 2007;50 (4) 256- 263PubMedGoogle ScholarCrossref
23.
Chiyonobu  THayashi  SKobayashi  KMorimoto  MMiyanomae  YNishimura  ANishimoto  AIto  CImoto  ISugimoto  TJia  ZInazawa  JToda  T Partial tandem duplication of GRIA3 in a male with mental retardation.  Am J Med Genet A 2007;143A (13) 1448- 1455PubMedGoogle ScholarCrossref
24.
Shaw-Smith  CPittman  AMWillatt  LMartin  HRickman  LGribble  SCurley  RCumming  SDunn  CKalaitzopoulos  DPorter  KPrigmore  EKrepischi-Santos  ACVarela  MCKoiffmann  CPLees  AJRosenberg  CFirth  HVde Silva  RCarter  NP Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability.  Nat Genet 2006;38 (9) 1032- 1037PubMedGoogle ScholarCrossref
25.
Weiss  LAShen  YKorn  JMArking  DEMiller  DTFossdal  RSaemundsen  EStefansson  HFerreira  MAGreen  TPlatt  OSRuderfer  DMWalsh  CAAltshuler  DChakravarti  ATanzi  REStefansson  KSantangelo  SLGusella  JFSklar  PWu  BLDaly  MJAutism Consortium, Association between microdeletion and microduplication at 16p11.2 and autism.  N Engl J Med 2008;358 (7) 667- 675PubMedGoogle ScholarCrossref
26.
Kumar  RAKaraMohamed  SSudi  JConrad  DFBrune  CBadner  JAGilliam  TCNowak  NJCook  EH  JrDobyns  WBChristian  SL Recurrent 16p11.2 microdeletions in autism.  Hum Mol Genet 2008;17 (4) 628- 638PubMedGoogle ScholarCrossref
27.
Kim  HGKishikawa  SHiggins  AWSeong  ISDonovan  DJShen  YLally  EWeiss  LANajm  JKutsche  KDescartes  MHolt  LBraddock  STroxell  RKaplan  LVolkmar  FKlin  ATsatsanis  KHarris  DJNoens  IPauls  DLDaly  MJMacDonald  MEMorton  CCQuade  BJGusella  JF Disruption of neurexin 1 associated with autism spectrum disorder.  Am J Hum Genet 2008;82 (1) 199- 207PubMedGoogle ScholarCrossref
28.
Zahir  FRBaross  ADelaney  ADEydoux  PFernandes  NDPugh  TMarra  MAFriedman  JM A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1α J Med Genet 2008;45 (4) 239- 243PubMedGoogle ScholarCrossref
29.
Dijkhuizen  Tvan Essen  Tvan der Vlies  PVerheij  JBSikkema-Raddatz  Bvan der Veen  AYGerssen-Schoorl  KBBuys  CHKok  K FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions.  Am J Med Genet A 2006;140 (22) 2482- 2487PubMedGoogle ScholarCrossref
30.
Roohi  JMontagna  CTegay  DHPalmer  LEDeVincent  CPomeroy  JCChristian  SLNowak  NHatchwell  E Disruption of contactin 4 in three subjects with autism spectrum disorder.  J Med Genet 2009;46 (3) 176- 182Google ScholarCrossref
31.
Meins  MHagh  JKGerresheim  FEinhoff  EOlschewski  HStrehl  HEpplen  JT Novel case of dup(3q) syndrome due to a de novo interstitial duplication 3q24-q26.31 with minimal overlap to the dup(3q) critical region.  Am J Med Genet A 2005;132A (1) 84- 89PubMedGoogle ScholarCrossref
32.
Kakinuma  HOzaki  MSato  HTakahashi  H Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).  Am J Med Genet B Neuropsychiatr Genet 2008;147B (6) 973- 975Google ScholarCrossref
33.
Friedman  JIVrijenhoek  TMarkx  SJanssen  IMvan der Vliet  WAFaas  BHKnoers  NVCahn  WKahn  RSEdelmann  LDavis  KLSilverman  JMBrunner  HGvan Kessel  AGWijmenga  COphoff  RAVeltman  JA CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy.  Mol Psychiatry 2008;13 (3) 261- 266PubMedGoogle ScholarCrossref
34.
Klopocki  EFiebig  BRobinson  PTönnies  HErdogan  FRopers  HHMundlos  SUllmann  R A novel 8 Mb interstitial deletion of chromosome 8p12-p21.2.  Am J Med Genet A 2006;140 (8) 873- 877PubMedGoogle ScholarCrossref
35.
Bolton  PFDennis  NRBrowne  CEThomas  NSVeltman  MWThompson  RJJacobs  P The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders.  Am J Med Genet 2001;105 (8) 675- 685PubMedGoogle ScholarCrossref
36.
Cook  EH  JrLindgren  VLeventhal  BLCourchesne  RLincoln  AShulman  CLord  CCourchesne  E Autism or atypical autism in maternally but not paternally derived proximal 15q duplication.  Am J Hum Genet 1997;60 (4) 928- 934PubMedGoogle Scholar
37.
Sharp  AJMefford  HCLi  KBaker  CSkinner  CStevenson  RESchroer  RJNovara  FDe Gregori  MCiccone  RBroomer  ACasuga  IWang  YXiao  CBarbacioru  CGimelli  GBernardina  BDTorniero  CGiorda  RRegan  RMurday  VMansour  SFichera  MCastiglia  LFailla  PVentura  MJiang  ZCooper  GMKnight  SJRomano  CZuffardi  OChen  CSchwartz  CEEichler  EE A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures.  Nat Genet 2008;40 (3) 322- 328PubMedGoogle ScholarCrossref
38.
Chocholska  SRossier  EBarbi  GKehrer-Sawatzki  H Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2-22.3 with a highly variable phenotype in female carriers.  Am J Med Genet A 2006;140 (6) 604- 610PubMedGoogle ScholarCrossref
39.
Kent  LEmerton  JBhadravathi  VWeisblatt  EPasco  GWillatt  LR McMahon  RYates  JR X-linked ichthyosis (steroid sulphatase deficiency) is associated with increased risk of attention deficit hyperactivity disorder, autism and social communication deficits.  J Med Genet 2008;45 (8) 519- 524Google ScholarCrossref
40.
Lawson-Yuen  ASaldivar  JSSommer  SPicker  J Familial deletion within NLGN4 associated with autism and Tourette syndrome.  Eur J Hum Genet 2008;16 (5) 614- 618PubMedGoogle ScholarCrossref
41.
Macarov  MZeigler  MNewman  JPStrich  DSury  VTennenbaum  AMeiner  V Deletions of VCX-A and NLGN4: a variable phenotype including normal intellect.  J Intellect Disabil Res 2007;51 (pt 5) 329- 333PubMedGoogle ScholarCrossref
42.
Jin  HGardner  RJViswesvaraiah  RMuntoni  FRoberts  RG Two novel members of the interleukin-1 receptor gene family, one deleted in Xp22.1-Xp21.3 mental retardation.  Eur J Hum Genet 2000;8 (2) 87- 94PubMedGoogle ScholarCrossref
43.
del Gaudio  DFang  PScaglia  FWard  PACraigen  WJGlaze  DGNeul  JLPatel  ALee  JAIrons  MBerry  SAPursley  AAGrebe  TAFreedenberg  DMartin  RAHsich  GEKhera  JRFriedman  NRZoghbi  HYEng  CMLupski  JRBeaudet  ALCheung  SWRoa  BB Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males.  Genet Med 2006;8 (12) 784- 792PubMedGoogle ScholarCrossref
44.
Casilli  FDi Rocco  ZCGad  STournier  IStoppa-Lyonnet  DFrebourg  TTosi  M Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments.  Hum Mutat 2002;20 (3) 218- 226PubMedGoogle ScholarCrossref
45.
Raux  GBumsel  EHecketsweiler  Bvan Amelsvoort  TZinkstok  JManouvrier-Hanu  SFantini  CBrévière  GMDi Rosa  GPustorino  GVogels  ASwillen  ALegallic  SBou  JOpolczynski  GDrouin-Garraud  VLemarchand  MPhilip  NGérard-Desplanches  ACarlier  MPhilippe  ANolen  MCHeron  DSarda  PLacombe  DCoizet  CAlembik  YLayet  VAfenjar  AHannequin  DDemily  CPetit  MThibaut  FFrebourg  TCampion  D Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome.  Hum Mol Genet 2007;16 (1) 83- 91PubMedGoogle ScholarCrossref
46.
Ohtsuki  TTanaka  SIshiguro  HNoguchi  EArinami  TTanabe  EYara  KOkubo  TTakahashi  SMatsuura  MSakai  TMuto  MKojima  TMatsushima  EToru  MInada  T Failure to find association between PRODH deletion and schizophrenia.  Schizophr Res 2004;67 (1) 111- 113PubMedGoogle ScholarCrossref
47.
Zogopoulos  GHa  KCNaqib  FMoore  SKim  HMontpetit  ARobidoux  FLaflamme  PCotterchio  MGreenwood  CScherer  SWZanke  BHudson  TJBader  GDGallinger  S Germ-line DNA copy number variation frequencies in a large North American population.  Hum Genet 2007;122 (3-4) 345- 353PubMedGoogle ScholarCrossref
48.
Goodman  BKRutberg  JLin  WWPulver  AEThomas  GH Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome.  J Inherit Metab Dis 2000;23 (8) 847- 848PubMedGoogle ScholarCrossref
49.
Bender  HUAlmashanu  SSteel  GHu  CALin  WWWillis  APulver  AValle  D Functional consequences of PRODH missense mutations.  Am J Hum Genet 2005;76 (3) 409- 420PubMedGoogle ScholarCrossref
50.
Jacquet  HDemily  CHouy  EHecketsweiler  BBou  JRaux  GLerond  JAllio  GHaouzir  STillaux  ABellegou  CFouldrin  GDelamillieure  PMénard  JFDollfus  SD’Amato  TPetit  MThibaut  FFrébourg  TCampion  D Hyperprolinemia is a risk factor for schizoaffective disorder.  Mol Psychiatry 2005;10 (5) 479- 485PubMedGoogle ScholarCrossref
51.
Cooper  SASmiley  EMorrison  JAllan  LWilliamson  AFinlayson  JJackson  AMantry  D Psychosis and adults with intellectual disabilities: prevalence, incidence, and related factors.  Soc Psychiatry Psychiatr Epidemiol 2007;42 (7) 530- 536PubMedGoogle ScholarCrossref
52.
Fombonne  E The epidemiology of autism: a review.  Psychol Med 1999;29 (4) 769- 786PubMedGoogle ScholarCrossref
53.
Stefansson  HRujescu  DCichon  SPietiläinen  OPIngason  ASteinberg  SFossdal  RSigurdsson  ESigmundsson  TBuizer-Voskamp  JEHansen  TJakobsen  KDMuglia  PFrancks  CMatthews  PMGylfason  AHalldorsson  BVGudbjartsson  DThorgeirsson  TESigurdsson  AJonasdottir  AJonasdottir  ABjornsson  AMattiasdottir  SBlondal  THaraldsson  MMagnusdottir  BBGiegling  IMöller  HJHartmann  AShianna  KVGe  DNeed  ACCrombie  CFraser  GWalker  NLonnqvist  JSuvisaari  JTuulio-Henriksson  APaunio  TToulopoulou  TBramon  EDi Forti  MMurray  RRuggeri  MVassos  ETosato  SWalshe  MLi  TVasilescu  CMühleisen  TWWang  AGUllum  HDjurovic  SMelle  IOlesen  J Kiemeney  LAFranke  BSabatti  CFreimer  NBGulcher  JRThorsteinsdottir  UKong  AAndreassen  OAOphoff  RAGeorgi  ARietschel  MWerge  TPetursson  HGoldstein  DBNöthen  MMPeltonen  LCollier  DASt Clair  DStefansson  K Large recurrent microdeletions associated with schizophrenia.  Nature 2008;455 (7210) 232- 236PubMedGoogle ScholarCrossref
54.
Mefford  HCSharp  AJBaker  CItsara  AJiang  ZBuysse  KHuang  SMaloney  VKCrolla  JABaralle  DCollins  AMercer  CNorga  Kde Ravel  TDevriendt  KBongers  EMde Leeuw  NReardon  WGimelli  SBena  FHennekam  RCMale  AGaunt  LClayton-Smith  JSimonic  IPark  SMMehta  SGNik-Zainal  SWoods  CGFirth  HVParkin  GFichera  MReitano  SLo Giudice  MLi  KECasuga  IBroomer  AConrad  BSchwerzmann  MRäber  LGallati  SStriano  PCoppola  ATolmie  JLTobias  ESLilley  CArmengol  LSpysschaert  YVerloo  PDe Coene  AGoossens  LMortier  GSpeleman  Fvan Binsbergen  ENelen  MRHochstenbach  RPoot  MGallagher  LGill  M McClellan  JKing  MCRegan  RSkinner  CStevenson  REAntonarakis  SEChen  CEstivill  XMenten  BGimelli  GGribble  SSchwartz  SSutcliffe  JSWalsh  TKnight  SJSebat  JRomano  CSchwartz  CEVeltman  JAde Vries  BBVermeesch  JRBarber  JCWillatt  LTassabehji  MEichler  EE Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes.  N Engl J Med 2008;359 (16) 1685- 1699PubMedGoogle ScholarCrossref
×