A Genomewide Association Study Points to Multiple Loci That Predict Antidepressant Drug Treatment Outcome in Depression | Genetics and Genomics | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Hennings  JMOwashi  TBinder  EBHorstmann  SMenke  AKloiber  SDose  TWollweber  BSpieler  DMesser  TLutz  RKünzel  HBierner  TPollmächer  TPfister  HNickel  TSonntag  AUhr  MIsing  MHolsboer  FLucae  S Clinical characteristics and treatment outcome in a representative sample of depressed inpatients: findings from the Munich Antidepressant Response Signature (MARS) project.  J Psychiatr Res 2009;43 (3) 215- 229PubMedGoogle Scholar
2.
Rush  AJTrivedi  MHWisniewski  SRNierenberg  AAStewart  JWWarden  DNiederehe  GThase  MELavori  PWLebowitz  BDMcGrath  PJRosenbaum  JFSackeim  HAKupfer  DJLuther  JFava  M Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.  Am J Psychiatry 2006;163 (11) 1905- 1917PubMedGoogle Scholar
3.
Roden  DMGeorge  AL  Jr The genetic basis of variability in drug responses.  Nat Rev Drug Discov 2002;1 (1) 37- 44PubMedGoogle Scholar
4.
Weinshilboum  R Inheritance and drug response.  N Engl J Med 2003;348 (6) 529- 537PubMedGoogle Scholar
5.
Angst  J Effect of antidepressants and genetic factors [in German].  Arzneimittelforschung 1964;14496- 500PubMedGoogle Scholar
6.
Franchini  LSerretti  AGasperini  MSmeraldi  E Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees.  J Psychiatr Res 1998;32 (5) 255- 259PubMedGoogle Scholar
7.
O’Reilly  RLBogue  LSingh  SM Pharmacogenetic response to antidepressants in a multicase family with affective disorder.  Biol Psychiatry 1994;36 (7) 467- 471PubMedGoogle Scholar
8.
Holsboer  F How can we realize the promise of personalized antidepressant medicines?  Nat Rev Neurosci 2008;9 (8) 638- 646PubMedGoogle Scholar
9.
Zanardi  RBenedetti  FDi Bella  DCatalano  MSmeraldi  E Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene.  J Clin Psychopharmacol 2000;20 (1) 105- 107PubMedGoogle Scholar
10.
Hu  XZRush  AJCharney  DWilson  AFSorant  AJPapanicolaou  GJFava  MTrivedi  MHWisniewski  SRLaje  GPaddock  SMcMahon  FJManji  HLipsky  RH Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression.  Arch Gen Psychiatry 2007;64 (7) 783- 792PubMedGoogle Scholar
11.
Uhr  MTontsch  ANamendorf  CRipke  SLucae  SIsing  MDose  TEbinger  MRosenhagen  MKohli  MKloiber  SSalyakina  DBettecken  TSpecht  MPütz  BBinder  EBMüller-Myhsok  BHolsboer  F Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression.  Neuron 2008;57 (2) 203- 209PubMedGoogle Scholar
12.
Binder  EBSalyakina  DLichtner  PWochnik  GMIsing  MPütz  BPapiol  SSeaman  SLucae  SKohli  MANickel  TKünzel  HEFuchs  BMajer  MPfennig  AKern  NBrunner  JModell  SBaghai  TDeiml  TZill  PBondy  BRupprecht  RMesser  TKöhnlein  ODabitz  HBrückl  TMüller  NPfister  HLieb  RMueller  JCLõhmussaar  EStrom  TMBettecken  TMeitinger  TUhr  MRein  THolsboer  FMuller-Myhsok  B Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment.  Nat Genet 2004;36 (12) 1319- 1325PubMedGoogle Scholar
13.
Kirchheiner  JLorch  RLebedeva  ESeeringer  ARoots  ISasse  JBrockmöller  J Genetic variants in FKBP5 affecting response to antidepressant drug treatment.  Pharmacogenomics 2008;9 (7) 841- 846PubMedGoogle Scholar
14.
Lekman  MLaje  GCharney  DRush  AJWilson  AFSorant  AJLipsky  RWisniewski  SRManji  HMcMahon  FJPaddock  S The FKBP5-gene in depression and treatment response: an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort.  Biol Psychiatry 2008;63 (12) 1103- 1110PubMedGoogle Scholar
15.
McMahon  FJBuervenich  SCharney  DLipsky  RRush  AJWilson  AFSorant  AJPapanicolaou  GJLaje  GFava  MTrivedi  MHWisniewski  SRManji  H Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment.  Am J Hum Genet 2006;78 (5) 804- 814PubMedGoogle Scholar
16.
Paddock  SLaje  GCharney  DRush  AJWilson  AFSorant  AJLipsky  RWisniewski  SRManji  HMcMahon  FJ Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort.  Am J Psychiatry 2007;164 (8) 1181- 1188PubMedGoogle Scholar
17.
Wong  MLWhelan  FDeloukas  PWhittaker  PDelgado  MCantor  RMMcCann  SMLicinio  J Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response.  Proc Natl Acad Sci U S A 2006;103 (41) 15124- 15129PubMedGoogle Scholar
18.
Wong  MLDong  CMaestre-Mesa  JLicinio  J Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response.  Mol Psychiatry 2008;13 (8) 800- 812PubMedGoogle Scholar
19.
Fava  MRush  AJAlpert  JEBalasubramani  GKWisniewski  SRCarmin  CNBiggs  MMZisook  SLeuchter  AHowland  RWarden  DTrivedi  MH Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report.  Am J Psychiatry 2008;165 (3) 342- 351PubMedGoogle Scholar
20.
Trivedi  MHRush  AJWisniewski  SRNierenberg  AAWarden  DRitz  LNorquist  GHowland  RHLebowitz  BMcGrath  PJShores-Wilson  KBiggs  MMBalasubramani  GKFava  MSTAR*D Study Team, Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice.  Am J Psychiatry 2006;163 (1) 28- 40PubMedGoogle Scholar
21.
Rush  AJTrivedi  MHIbrahim  HMCarmody  TJArnow  BKlein  DNMarkowitz  JCNinan  PTKornstein  SManber  RThase  MEKocsis  JHKeller  MB The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression.  Biol Psychiatry 2003;54 (5) 573- 583PubMedGoogle Scholar
22.
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, text revision).  Washington, DC American Psychiatric Association2000;
23.
Hamilton  M A rating scale for depression.  J Neurol Neurosurg Psychiatry 1960;2356- 62PubMedGoogle Scholar
24.
Rush  AJTrivedi  MFava  M Depression, IV: STAR*D treatment trial for depression.  Am J Psychiatry 2003;160 (2) 237PubMedGoogle Scholar
25.
Zimmerman  MMattia  JI The Psychiatric Diagnostic Screening Questionnaire: development, reliability and validity.  Compr Psychiatry 2001;42 (3) 175- 189PubMedGoogle Scholar
26.
Wittchen  H-UPfister  H DIA-X Interviews.  Frankfurt, Germany Swets & Zeitlinger1997;
27.
Abraham  RMoskvina  VSims  RHollingworth  PMorgan  AGeorgieva  LDowzell  KCichon  SHillmer  AMO’Donovan  MCWilliams  JOwen  MJKirov  G A genome-wide association study for late-onset Alzheimer's disease using DNA pooling.  BMC Med Genomics 2008;144PubMedGoogle Scholar
28.
Kirov  GZaharieva  IGeorgieva  LMoskvina  VNikolov  ICichon  SHillmer  AToucheva  DOwen  MJO’Donovan  MC A genome-wide association study in 574 schizophrenia trios using DNA pooling [published online ahead of print March 11, 2008].  Mol Psychiatry doi:10.1038/mp.2008.33Google Scholar
29.
Macgregor  SZhao  ZZHenders  ANicholas  MGMontgomery  GWVisscher  PM Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays.  Nucleic Acids Res 2008;36 (6) e35PubMedGoogle Scholar
30.
Skol  ADScott  LJAbecasis  GRBoehnke  M Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies.  Nat Genet 2006;38 (2) 209- 213PubMedGoogle Scholar
31.
Westfall  PHYoung  SS Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment.  New York, NY John Wiley & Sons1993;
32.
O’Leary  DCostello  FGormley  NWebb  M Remission onset and relapse in depression: an 18-month prospective study of course for 100 first admission patients.  J Affect Disord 2000;57 (1-3) 159- 171PubMedGoogle Scholar
33.
Moses  TLeuchter  AFCook  IAbrams  M Does the clinical course of depression determine improvement in symptoms and quality of life?  J Nerv Ment Dis 2006;194 (4) 241- 248PubMedGoogle Scholar
34.
Sargeant  JKBruce  MLFlorio  LPWeissman  MM Factors associated with 1-year outcome of major depression in the community.  Arch Gen Psychiatry 1990;47 (6) 519- 526PubMedGoogle Scholar
35.
Keller  MBKlerman  GLLavori  PWCoryell  WEndicott  JTaylor  J Long-term outcome of episodes of major depression: clinical and public health significance.  JAMA 1984;252 (6) 788- 792PubMedGoogle Scholar
36.
Rush  AJKraemer  HCSackeim  HAFava  MTrivedi  MHFrank  ENinan  PTThase  MEGelenberg  AJKupfer  DJRegier  DARosenbaum  JFRay  OSchatzberg  AFACNP Task Force, Report by the ACNP Task Force on response and remission in major depressive disorder.  Neuropsychopharmacology 2006;31 (9) 1841- 1853PubMedGoogle Scholar
37.
Kumar  RA McGhee  KALeach  SBonaguro  RMaclean  AAguirre-Hernandez  RAbrahams  BSCoccaro  EFHodgins  STurecki  GCondon  AMuir  WJBrooks-Wilson  ARBlackwood  DHSimpson  EM Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing.  Am J Med Genet B Neuropsychiatr Genet 2008;147B (6) 880- 889PubMedGoogle Scholar
38.
Christie  BRLi  AMRedila  VABooth  HWong  BKEadie  BDErnst  CSimpson  EM Deletion of the nuclear receptor Nr2e1 impairs synaptic plasticity and dendritic structure in the mouse dentate gyrus.  Neuroscience 2006;137 (3) 1031- 1037PubMedGoogle Scholar
39.
Yamaguchi  YPasquale  EB Eph receptors in the adult brain.  Curr Opin Neurobiol 2004;14 (3) 288- 296PubMedGoogle Scholar
40.
Wells  KBRogers  WBurnam  MACamp  P Course of depression in patients with hypertension, myocardial infarction, or insulin-dependent diabetes.  Am J Psychiatry 1993;150 (4) 632- 638PubMedGoogle Scholar
41.
Mei  LXiong  WC Neuregulin 1 in neural development, synaptic plasticity and schizophrenia.  Nat Rev Neurosci 2008;9 (6) 437- 452PubMedGoogle Scholar
42.
Stefansson  HSteinthorsdottir  VThorgeirsson  TEGulcher  JRStefansson  K Neuregulin 1 and schizophrenia.  Ann Med 2004;36 (1) 62- 71PubMedGoogle Scholar
43.
Georgieva  LDimitrova  AIvanov  DNikolov  IWilliams  NMGrozeva  DZaharieva  IToncheva  DOwen  MJKirov  GO’Donovan  MC Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia.  Biol Psychiatry 2008;64 (5) 419- 427PubMedGoogle Scholar
44.
Bertram  IBernstein  H-GLendeckel  UBukowska  ADobrowolny  HKeilhoff  GKanakis  DMawrin  CBielau  HFalkai  PBogerts  B Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression.  Ann N Y Acad Sci 2007;1096147- 156PubMedGoogle Scholar
45.
Orsetti  MDi Brisco  FCanonico  PLGenazzani  AAGhi  P Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm: an animal model of human depression.  Eur J Neurosci 2008;27 (8) 2156- 2164PubMedGoogle Scholar
46.
Conti  BMaier  RBarr  AMMorale  MCLu  XSanna  PPBilbe  GHoyer  DBartfai  T Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine.  Mol Psychiatry 2007;12 (2) 167- 189PubMedGoogle Scholar
47.
Mathew  SJManji  HKCharney  DS Novel drugs and therapeutic targets for severe mood disorders.  Neuropsychopharmacology 2008;33 (9) 2080- 2092PubMedGoogle Scholar
48.
Wong  MLLicinio  J From monoamines to genomic targets: a paradigm shift for drug discovery in depression.  Nat Rev Drug Discov 2004;3 (2) 136- 151PubMedGoogle Scholar
Original Article
September 2009

A Genomewide Association Study Points to Multiple Loci That Predict Antidepressant Drug Treatment Outcome in Depression

Author Affiliations

Author Affiliations: Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok and Mr Kohli); Department of Psychiatry, Ludwig Maximilians University, Munich (Drs Bondy and Rupprecht); Department of Psychiatry, Westfalian Wilhelms University, Muenster, Germany (Drs Domschke, Baune, and Arolt); Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune); Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Dr Rush); and Department of Clinical Sciences, Duke–National University of Singapore (Dr Rush).*Drs Ising and Lucae contributed equally to this article; their names are listed in alphabetical order.

Arch Gen Psychiatry. 2009;66(9):966-975. doi:10.1001/archgenpsychiatry.2009.95
Abstract

Context  The efficacy of antidepressant drug treatment in depression is unsatisfactory; 1 in 3 patients does not fully recover even after several treatment trials. Genetic factors and clinical characteristics contribute to the failure of a favorable treatment outcome.

Objective  To identify genetic and clinical determinants of antidepressant drug treatment outcome in depression.

Design  Genomewide pharmacogenetic association study with 2 independent replication samples.

Setting  We performed a genomewide association study in patients from the Munich Antidepressant Response Signature (MARS) project and in pooled DNA from an independent German replication sample. A set of 328 single-nucleotide polymorphisms highly related to outcome in both genomewide association studies was genotyped in a sample of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study.

Participants  A total of 339 inpatients with a depressive episode (MARS sample), a further 361 inpatients with depression (German replication sample), and 832 outpatients with major depression (STAR*D sample).

Main Outcome Measures  We generated a multilocus genetic variable that described the individual number of alleles of the selected single nucleotide polymorphisms associated with beneficial treatment outcome in the MARS sample (“response” alleles) to evaluate additive genetic effects on antidepressant drug treatment outcome.

Results  Multilocus analysis revealed a significant contribution of a binary variable that categorized patients as carriers of a high vs low number of response alleles in the prediction of antidepressant drug treatment outcome in both samples (MARS and STAR*D). In addition, we observed that patients with a comorbid anxiety disorder combined with a low number of response alleles showed the least favorable outcome.

Conclusion  These results demonstrate the importance of multiple genetic factors combined with clinical features in the prediction of antidepressant drug treatment outcome, which underscores the multifactorial nature of this trait.

×