Mitochondrial Complex I Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients With Bipolar Disorder | Bipolar and Related Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.185.54. Please contact the publisher to request reinstatement.
1.
Kupfer  DJ The increasing medical burden in bipolar disorder.  JAMA 2005;293 (20) 2528- 2530PubMedGoogle ScholarCrossref
2.
Kapczinski  FDias  VVKauer-Sant’Anna  MFrey  BNGrassi-Oliveira  RColom  FBerk  M Clinical implications of a staging model for bipolar disorders.  Expert Rev Neurother 2009;9 (7) 957- 966PubMedGoogle ScholarCrossref
3.
Ongür  DDrevets  WCPrice  JL Glial reduction in the subgenual prefrontal cortex in mood disorders.  Proc Natl Acad Sci U S A 1998;95 (22) 13290- 13295PubMedGoogle ScholarCrossref
4.
Rajkowska  GHalaris  ASelemon  LD Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder.  Biol Psychiatry 2001;49 (9) 741- 752PubMedGoogle ScholarCrossref
5.
Uranova  NOrlovskaya  DVikhreva  OZimina  IKolomeets  NVostrikov  VRachmanova  V Electron microscopy of oligodendroglia in severe mental illness.  Brain Res Bull 2001;55 (5) 597- 610PubMedGoogle ScholarCrossref
6.
Vostrikov  VMUranova  NAOrlovskaya  DD Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders.  Schizophr Res 2007;94 (1-3) 273- 280PubMedGoogle ScholarCrossref
7.
Davis  KAKwon  ACardenas  VADeicken  RF Decreased cortical gray and cerebral white matter in male patients with familial bipolar I disorder.  J Affect Disord 2004;82 (3) 475- 485PubMedGoogle Scholar
8.
Papa  LRockwell  P Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition.  Apoptosis 2008;13 (4) 588- 599PubMedGoogle ScholarCrossref
9.
Takuma  KBaba  AMatsuda  T Astrocyte apoptosis: implications for neuroprotection.  Prog Neurobiol 2004;72 (2) 111- 127PubMedGoogle ScholarCrossref
10.
Jeong  SYSeol  DW The role of mitochondria in apoptosis.  BMB Rep 2008;41 (1) 11- 22PubMedGoogle ScholarCrossref
11.
Kuwana  TNewmeyer  DD Bcl-2-family proteins and the role of mitochondria in apoptosis.  Curr Opin Cell Biol 2003;15 (6) 691- 699PubMedGoogle ScholarCrossref
12.
Reeve  AKKrishnan  KJTurnbull  DM Age related mitochondrial degenerative disorders in humans.  Biotechnol J 2008;3 (6) 750- 756PubMedGoogle ScholarCrossref
13.
Green  DRKroemer  G The pathophysiology of mitochondrial cell death.  Science 2004;305 (5684) 626- 629PubMedGoogle ScholarCrossref
14.
Lenaz  G The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.  IUBMB Life 2001;52 (3-5) 159- 164PubMedGoogle ScholarCrossref
15.
Beal  MF Oxidatively modified proteins in aging and disease.  Free Radic Biol Med 2002;32 (9) 797- 803PubMedGoogle ScholarCrossref
16.
Rivett  AJ Regulation of intracellular protein turnover: covalent modification as a mechanism of marking proteins for degradation.  Curr Top Cell Regul 1986;28291- 337PubMedGoogle Scholar
17.
Berlett  BSLevine  RLStadtman  ER Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation.  Proc Natl Acad Sci U S A 1998;95 (6) 2784- 2789PubMedGoogle ScholarCrossref
18.
Naoi  MMaruyama  WShamoto-Nagai  MYi  HAkao  YTanaka  M Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders.  Mol Neurobiol 2005;31 (1-3) 81- 93PubMedGoogle ScholarCrossref
19.
Kato  TTakahashi  SShioiri  TInubushi  T Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy.  J Affect Disord 1993;27 (1) 53- 59PubMedGoogle ScholarCrossref
20.
Frey  BNStanley  JANery  FGMonkul  ESNicoletti  MAChen  HHHatch  JPCaetano  SCOrtiz  OKapczinski  FSoares  JC Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study.  Bipolar Disord 2007;9(suppl 1)119- 127PubMedGoogle ScholarCrossref
21.
Kato  TStine  OC McMahon  FJCrowe  RR Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder.  Biol Psychiatry 1997;42 (10) 871- 875PubMedGoogle ScholarCrossref
22.
Sun  XWang  JFTseng  MYoung  LT Downregulation in components of mitochondrial electron transport chain in postmortem frontal cortex from subjects with bipolar disorder.  J Psychiatry Neurosci 2006;31 (3) 189- 196PubMedGoogle Scholar
23.
Iwamoto  KBundo  MKato  T Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis.  Hum Mol Genet 2005;14 (2) 241- 253PubMedGoogle ScholarCrossref
24.
Konradi  CEaton  MMacDonald  MLWalsh  JBenes  FMHeckers  S Molecular evidence for mitochondrial dysfunction in bipolar disorder.  Arch Gen Psychiatry 2004;61 (3) 300- 308PubMedGoogle ScholarCrossref
25.
Washizuka  SIwamoto  KKakiuchi  CBundo  MKato  T Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia.  Neurosci Res 2009;63 (3) 199- 204PubMedGoogle ScholarCrossref
26.
Xu  CLi  PPKennedy  JLGreen  MHughes  BCooke  RGParikh  SVWarsh  JJ Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder.  Bipolar Disord 2008;10 (1) 105- 110PubMedGoogle ScholarCrossref
27.
Karry  RKlein  EBen Shachar  D Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study.  Biol Psychiatry 2004;55 (7) 676- 684PubMedGoogle ScholarCrossref
28.
Ben-Shachar  DZuk  RGazawi  HReshef  ASheinkman  AKlein  E Increased mitochondrial complex I activity in platelets of schizophrenic patients.  Int J Neuropsychopharmacol 1999;2 (4) 245- 253PubMedGoogle ScholarCrossref
29.
Maurer  IZierz  SMoller  H Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia.  Schizophr Res 2001;48 (1) 125- 136PubMedGoogle ScholarCrossref
30.
Prabakaran  SSwatton  JERyan  MMHuffaker  SJHuang  JTGriffin  JLWayland  MFreeman  TDudbridge  FLilley  KSKarp  NAHester  STkachev  DMimmack  MLYolken  RHWebster  MJTorrey  EFBahn  S Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.  Mol Psychiatry 2004;9 (7) 684- 697, 643PubMedGoogle ScholarCrossref
31.
Gardner  AJohansson  AWibom  RNennesmo  Ivon Döbeln  UHagenfeldt  LHällström  T Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients.  J Affect Disord 2003;76 (1-3) 55- 68PubMedGoogle ScholarCrossref
32.
Kuloglu  MUstundag  BAtmaca  MCanatan  HTezcan  AECinkilinc  N Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder.  Cell Biochem Funct 2002;20 (2) 171- 175PubMedGoogle ScholarCrossref
33.
Andreazza  ACCassini  CRosa  ARLeite  MCde Almeida  LMNardin  PCunha  ABCeresér  KMSantin  AGottfried  CSalvador  MKapczinski  FGonçalves  CA Serum S100B and antioxidant enzymes in bipolar patients.  J Psychiatr Res 2007;41 (6) 523- 529PubMedGoogle ScholarCrossref
34.
Machado-Vieira  RAndreazza  ACViale  CIZanatto  VCereser  V  Jrda Silva Vargas  RKapczinski  FPortela  LVSouza  DOSalvador  MGentil  V Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects.  Neurosci Lett 2007;421 (1) 33- 36PubMedGoogle ScholarCrossref
35.
Savaş  HAHerken  HYürekli  MUz  ETutkun  HZoroğlu  SSOzen  MECengiz  BAkyol  O Possible role of nitric oxide and adrenomedullin in bipolar affective disorder.  Neuropsychobiology 2002;45 (2) 57- 61PubMedGoogle ScholarCrossref
36.
Savas  HAGergerlioglu  HSArmutcu  FHerken  HYilmaz  HRKocoglu  ESelek  STutkun  HZoroglu  SSAkyol  O Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impact of past episodes.  World J Biol Psychiatry 2006;7 (1) 51- 55PubMedGoogle ScholarCrossref
37.
Selek  SSavas  HAGergerlioglu  HSBulbul  FUz  EYumru  M The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode.  J Affect Disord 2008;107 (1-3) 89- 94PubMedGoogle ScholarCrossref
38.
Andreazza  ACFrey  BNErdtmann  BSalvador  MRombaldi  FSantin  AGonçalves  CAKapczinski  F DNA damage in bipolar disorder.  Psychiatry Res 2007;153 (1) 27- 32PubMedGoogle ScholarCrossref
39.
Buttner  NBhattacharyya  SWalsh  JBenes  FM DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia.  Schizophr Res 2007;93 (1-3) 33- 41PubMedGoogle ScholarCrossref
40.
Wang  JFShao  LSun  XYoung  LT Increased oxidative stress in anterior cingulate cortex of subjects with bipolar disorder and schizophrenia.  Bipolar Disord 2009;11 (5) 523- 529PubMedGoogle ScholarCrossref
41.
Lebon  SMinai  LChretien  DCorcos  JSerre  VKadhom  NSteffann  JPauchard  JYMunnich  ABonnefont  JPRötig  A A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome.  Mol Genet Metab 2007;92 (1-2) 104- 108PubMedGoogle ScholarCrossref
42.
Torrey  EFWebster  MKnable  MJohnston  NYolken  RH The Stanley Foundation brain collection and neuropathology consortium.  Schizophr Res 2000;44 (2) 151- 155PubMedGoogle ScholarCrossref
43.
Smith  AL Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small-scale.  Methods Enzymol 1967;1081- 86Google Scholar
44.
Estornell  EFato  RPallotti  FLenaz  G Assay conditions for the mitochondrial NADH: coenzyme Q oxidoreductase.  FEBS Lett 1993;332 (1-2) 127- 131PubMedGoogle ScholarCrossref
45.
Wang  JF Defects of mitochondrial electron transport chain in bipolar disorder: implications for mood-stabilizing treatment.  Can J Psychiatry 2007;52 (12) 753- 762PubMedGoogle Scholar
46.
Murray  JTaylor  SWZhang  BGhosh  SSCapaldi  RA Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry.  J Biol Chem 2003;278 (39) 37223- 37230PubMedGoogle ScholarCrossref
47.
Iwamoto  KKakiuchi  CBundo  MIkeda  KKato  T Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders.  Mol Psychiatry 2004;9 (4) 406- 416PubMedGoogle ScholarCrossref
48.
Cavelier  LJazin  EEEriksson  IPrince  JBåve  UOreland  LGyllensten  U Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics.  Genomics 1995;29 (1) 217- 224PubMedGoogle ScholarCrossref
49.
Prince  JABlennow  KGottfries  CGKarlsson  IOreland  L Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics.  Neuropsychopharmacology 1999;21 (3) 372- 379PubMedGoogle ScholarCrossref
50.
Brandt  UKerscher  SDröse  SZwicker  KZickermann  V Proton pumping by NADH:ubiquinone oxidoreductase: a redox driven conformational change mechanism?  FEBS Lett 2003;545 (1) 9- 17PubMedGoogle ScholarCrossref
51.
Turrens  JFBoveris  A Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.  Biochem J 1980;191 (2) 421- 427PubMedGoogle Scholar
52.
Boveris  AChance  B The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen.  Biochem J 1973;134 (3) 707- 716PubMedGoogle Scholar
53.
Benes  FMMatzilevich  DBurke  REWalsh  J The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia.  Mol Psychiatry 2006;11 (3) 241- 251PubMedGoogle ScholarCrossref
54.
Castegna  AAksenov  MAksenova  MThongboonkerd  VKlein  JBPierce  WMBooze  RMarkesbery  WRButterfield  DA Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain, part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1.  Free Radic Biol Med 2002;33 (4) 562- 571PubMedGoogle ScholarCrossref
55.
Castegna  AAksenov  MThongboonkerd  VKlein  JBPierce  WMBooze  RMarkesbery  WRButterfield  DA Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain, part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71.  J Neurochem 2002;82 (6) 1524- 1532PubMedGoogle ScholarCrossref
56.
Oliveira  RMGuimarães  FSDeakin  JF Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders.  Braz J Med Biol Res 2008;41 (4) 333- 341PubMedGoogle ScholarCrossref
57.
Andreazza  ACKapczinski  FKauer-Sant’Anna  MWalz  JCBond  DJGonçalves  CAYoung  LTYatham  LN 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder.  J Psychiatry Neurosci 2009;34 (4) 263- 271PubMedGoogle Scholar
58.
Vawter  MPTomita  HMeng  FBolstad  BLi  JEvans  SChoudary  PAtz  MShao  LNeal  CWalsh  DMBurmeister  MSpeed  TMyers  RJones  EGWatson  SJAkil  HBunney  WE Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders.  Mol Psychiatry 2006;11 (7) 615, 663- 679PubMedGoogle Scholar
59.
Kato  TMurashita  JKamiya  AShioiri  TKato  NInubushi  T Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity.  Eur Arch Psychiatry Clin Neurosci 1998;248 (6) 301- 306PubMedGoogle ScholarCrossref
60.
Hamakawa  HMurashita  JYamada  NInubushi  TKato  NKato  T Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder.  Psychiatry Clin Neurosci 2004;58 (1) 82- 88PubMedGoogle ScholarCrossref
61.
Pierri  JNVolk  CLAuh  SSampson  ALewis  DA Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia.  Arch Gen Psychiatry 2001;58 (5) 466- 473PubMedGoogle ScholarCrossref
62.
Ricci  CPastukh  VLeonard  JTurrens  JWilson  GSchaffer  DSchaffer  SW Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis.  Am J Physiol Cell Physiol 2008;294 (2) C413- C422PubMedGoogle ScholarCrossref
Original Article
April 2010

Mitochondrial Complex I Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients With Bipolar Disorder

Author Affiliations

Author Affiliations: Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.

Arch Gen Psychiatry. 2010;67(4):360-368. doi:10.1001/archgenpsychiatry.2010.22
Abstract

Context  Accumulating evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of bipolar disorder and schizophrenia. It remains unclear whether mitochondrial dysfunction, specifically complex I impairment, is associated with increased oxidative damage and, if so, whether this relationship is specific to bipolar disorder.

Objective  To evaluate whether decreased levels of the electron transport chain complex I subunit NDUFS7 are associated with complex I activity and increased oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder, schizophrenia, or major depressive disorder.

Design  Postmortem prefrontal cortex from patients and controls were assessed using immunoblotting, spectrophotometric, competitive enzyme immunoassay to identify group differences in expression and activity of complex I, and in oxidative damage in mitochondria.

Setting  University of British Columbia, Vancouver, Canada.

Patients  Forty-five patients with a psychiatric disorder (15 each with bipolar disorder, schizophrenia, and major depressive disorder) and 15 nonpsychiatric control subjects were studied.

Main Outcome Measures  Oxidative damage to proteins and mitochondrial complex I activity.

Results  Levels of NDUFS7 and complex I activity were decreased significantly in patients with bipolar disorder but were unchanged in those with depression and schizophrenia compared with controls. Protein oxidation, as measured by protein carbonylation, was increased significantly in the bipolar group but not in the depressed or schizophrenic groups compared with controls. We observed increased levels of 3-nitrotyrosine in the bipolar disorder and schizophrenia groups.

Conclusions  Impairment of complex I may be associated with increased protein oxidation and nitration in the prefrontal cortex of patients with bipolar disorder. Therefore, complex I activity and mitochondrial dysfunction may be potential therapeutic targets for bipolar disorder.

×