Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease | Dementia and Cognitive Impairment | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.185.54. Please contact the publisher to request reinstatement.
1.
Aluise  CDSowell  RAButterfield  DA Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease.  Biochim Biophys Acta 2008;1782 (10) 549- 558PubMedGoogle Scholar
2.
Hampel  HBurger  KTeipel  SJBokde  ALZetterberg  HBlennow  K Core candidate neurochemical and imaging biomarkers of Alzheimer's disease.  Alzheimers Dement 2008;4 (1) 38- 48PubMedGoogle Scholar
3.
Blennow  KVanMechelen  EHampel  H CSF total tau, Aβ42 and phosphorylated tau protein as biomarkers for Alzheimer's disease.  Mol Neurobiol 2001;24 (1-3) 87- 97PubMedGoogle Scholar
4.
Buerger  KEwers  MPirttila  TZinkowski  RAlafuzoff  ITeipel  SJDeBernardis  JKerkman  DMcCulloch  CSoininen  HHampel  H CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease.  Brain 2006;129 (pt 11) 3035- 3041PubMedGoogle Scholar
5.
Fagan  AMMintun  MAMach  RHLee  SYDence  CSShah  ARLaRossa  GNSpinner  MLKlunk  WEMathis  CADeKosky  STMorris  JCHoltzman  DM Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans.  Ann Neurol 2006;59 (3) 512- 519PubMedGoogle Scholar
6.
Britschgi  MWyss-Coray  T Blood protein signature for the early diagnosis of Alzheimer disease.  Arch Neurol 2009;66 (2) 161- 165PubMedGoogle Scholar
7.
Hye  ALynham  SThambisetty  MCausevic  MCampbell  JByers  HLHooper  CRijsdijk  FTabrizi  SJBanner  SShaw  CEFoy  CPoppe  MArcher  NHamilton  GPowell  JBrown  RGSham  PWard  MLovestone  S Proteome-based plasma biomarkers for Alzheimer's disease.  Brain 2006;129 (pt 11) 3042- 3050PubMedGoogle Scholar
8.
Irizarry  MC Biomarkers of Alzheimer disease in plasma.  NeuroRx 2004;1 (2) 226- 234PubMedGoogle Scholar
9.
Lönneborg  A Biomarkers for Alzheimer disease in cerebrospinal fluid, urine, and blood.  Mol Diagn Ther 2008;12 (5) 307- 320PubMedGoogle Scholar
10.
Mrak  REGriffin  WS Potential inflammatory biomarkers in Alzheimer's disease.  J Alzheimers Dis 2005;8 (4) 369- 375PubMedGoogle Scholar
11.
Ray  SBritschgi  MHerbert  CTakeda-Uchimura  YBoxer  ABlennow  KFriedman  LFGalasko  DRJutel  MKarydas  AKaye  JALeszek  JMiller  BLMinthon  LQuinn  JFRabinovici  GDRobinson  WHSabbagh  MNSo  YTSparks  DLTabaton  MTinklenberg  JYesavage  JATibshirani  RWyss-Coray  T Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins.  Nat Med 2007;13 (11) 1359- 1362PubMedGoogle Scholar
12.
Marksteiner  JKemmler  GWeiss  EM  et al.  Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer's disease [published online ahead of print April 22, 2009].  Neurobiol Aging doi:10.1016/j.neurobiolaging.2009.03.011Google Scholar
13.
Shi  MCaudle  WMZhang  J Biomarker discovery in neurodegenerative diseases: a proteomic approach.  Neurobiol Dis 2009;35 (2) 157- 164PubMedGoogle Scholar
14.
Zhang  JGoodlett  DRPeskind  ERQuinn  JFZhou  YWang  QPan  CYi  EEng  JAebersold  RHMontine  TJ Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid.  Neurobiol Aging 2005;26 (2) 207- 227PubMedGoogle Scholar
15.
Brooks  JO  IIIYesavage  JA Identification of fast and slow decliners in Alzheimer disease: a different approach.  Alzheimer Dis Assoc Disord 1995;9(suppl 1)S19- S25PubMedGoogle Scholar
16.
Kraemer  HCTinklenberg  JYesavage  JA ‘How far’ vs ‘how fast’ in Alzheimer's disease: the question revisited.  Arch Neurol 1994;51 (3) 275- 279PubMedGoogle Scholar
17.
Braak  HBraak  E Neuropathological stageing of Alzheimer-related changes.  Acta Neuropathol 1991;82 (4) 239- 259PubMedGoogle Scholar
18.
Lovestone  SFrancis  PStrandgaard  K Biomarkers for disease modification trials–the innovative medicines initiative and AddNeuroMed.  J Nutr Health Aging 2007;11 (4) 359- 361PubMedGoogle Scholar
19.
Petersen  RCSmith  GEWaring  SCIvnik  RJTangalos  EGKokmen  E Mild cognitive impairment: clinical characterization and outcome.  Arch Neurol 1999;56 (3) 303- 308PubMedGoogle Scholar
20.
Foy  CMNicholas  HHollingworth  PBoothby  HWillams  JBrown  RGAl-Sarraj  SLovestone  S Diagnosing Alzheimer's disease: non-clinicians and computerised algorithms together are as accurate as the best clinical practice.  Int J Geriatr Psychiatry 2007;22 (11) 1154- 1163PubMedGoogle Scholar
21.
Resnick  SMGoldszal  AFDavatzikos  CGolski  SKraut  MAMetter  EJBryan  RNZonderman  AB One-year age changes in MRI brain volumes in older adults.  Cereb Cortex 2000;10 (5) 464- 472PubMedGoogle Scholar
22.
Desikan  RSSegonne  FFischl  BQuinn  BTDickerson  BCBlacker  DBuckner  RLDale  AMMaguire  RPHyman  BTAlbert  MSKilliany  RJ An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.  Neuroimage 2006;31 (3) 968- 980PubMedGoogle Scholar
23.
Fischl  Bvan der Kouwe  ADestrieux  CHalgren  ESégonne  FSalat  DHBusa  ESeidman  LJGoldstein  JKennedy  DCaviness  VMakris  NRosen  BDale  AM Automatically parcellating the human cerebral cortex.  Cereb Cortex 2004;14 (1) 11- 22PubMedGoogle Scholar
24.
Zhou  YEndres  CJBrasic  JRHuang  SCWong  DF Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model.  Neuroimage 2003;18 (4) 975- 989PubMedGoogle Scholar
25.
Zhou  YResnick  SMYe  WFan  HHolt  DPKlunk  WEMathis  CADannals  RWong  DF Using a reference tissue model with spatial constraint to quantify [11C]Pittsburgh compound B PET for early diagnosis of Alzheimer's disease.  Neuroimage 2007;36 (2) 298- 312PubMedGoogle Scholar
26.
Maldjian  JALaurienti  PJKraft  RABurdette  JH An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.  Neuroimage 2003;19 (3) 1233- 1239PubMedGoogle Scholar
27.
Howlett  DRRichardson  JCAustin  AParsons  AABate  STDavies  DCGonzalez  MI Cognitive correlates of Aβ deposition in male and female mice bearing amyloid precursor protein and presenilin-1 mutant transgenes.  Brain Res 2004;1017 (1-2) 130- 136PubMedGoogle Scholar
28.
Howlett  DRBowler  KSoden  PERiddell  DDavis  JBRichardson  JCBurbidge  SAGonzalez  MIIrving  EALawman  AMiglio  GDawson  ELHowlett  ERHussain  I Aβ deposition and related pathology in an APP × PS1 transgenic mouse model of Alzheimer's disease.  Histol Histopathol 2008;23 (1) 67- 76PubMedGoogle Scholar
29.
Eriksson  LAntti  HGottfries  JHolmes  EJohansson  ELindgren  FLong  ILundstedt  TTrygg  JWold  S Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics.  Anal Bioanal Chem 2004;380 (3) 419- 429PubMedGoogle Scholar
30.
Mintun  MALarossa  GNSheline  YIDence  CSLee  SYMach  RHKlunk  WEMathis  CADeKosky  STMorris  JC [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease.  Neurology 2006;67 (3) 446- 452PubMedGoogle Scholar
31.
Harold  DAbraham  RHollingworth  PSims  RGerrish  AHamshere  MLPahwa  JSMoskvina  VDowzell  KWilliams  AJones  NThomas  CStretton  AMorgan  ARLovestone  SPowell  JProitsi  PLupton  MKBrayne  CRubinsztein  DCGill  MLawlor  BLynch  AMorgan  KBrown  KSPassmore  PACraig  DMcGuinness  BTodd  SHolmes  CMann  DSmith  ADLove  SKehoe  PGHardy  JMead  SFox  NRossor  MCollinge  JMaier  WJessen  FSchürmann  Bvan den Bussche  HHeuser  IKornhuber  JWiltfang  JDichgans  MFrölich  LHampel  HHüll  MRujescu  DGoate  AMKauwe  JSCruchaga  CNowotny  PMorris  JCMayo  KSleegers  KBettens  KEngelborghs  SDe Deyn  PPVan Broeckhoven  CLivingston  GBass  NJGurling  HMcQuillin  AGwilliam  RDeloukas  PAl-Chalabi  AShaw  CETsolaki  MSingleton  ABGuerreiro  RMühleisen  TWNöthen  MMMoebus  SJöckel  KHKlopp  NWichmann  HECarrasquillo  MMPankratz  VSYounkin  SGHolmans  PAO’Donovan  MOwen  MJWilliams  J Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.  Nat Genet 2009;41 (10) 1088- 1093PubMedGoogle Scholar
32.
Lambert  JCHeath  SEven  GCampion  DSleegers  KHiltunen  MCombarros  OZelenika  DBullido  MJTavernier  BLetenneur  LBettens  KBerr  CPasquier  FFiévet  NBarberger-Gateau  PEngelborghs  SDe Deyn  PMateo  IFranck  AHelisalmi  SPorcellini  EHanon  Ode Pancorbo  MMLendon  CDufouil  CJaillard  CLeveillard  TAlvarez  VBosco  PMancuso  MPanza  FNacmias  BBossù  PPiccardi  PAnnoni  GSeripa  DGalimberti  DHannequin  DLicastro  FSoininen  HRitchie  KBlanché  HDartigues  JFTzourio  CGut  IVan Broeckhoven  CAlpérovitch  ALathrop  MAmouyel  PEuropean Alzheimer's Disease Initiative Investigators, Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease.  Nat Genet 2009;41 (10) 1094- 1099PubMedGoogle Scholar
33.
Kantarci  KJack  CR  Jr Neuroimaging in Alzheimer disease: an evidence-based review.  Neuroimaging Clin N Am 2003;13 (2) 197- 209PubMedGoogle Scholar
34.
Nestor  PJScheltens  PHodges  JR Advances in the early detection of Alzheimer's disease.  Nat Med 2004;10(suppl)S34- S41PubMedGoogle Scholar
35.
Hampel  HBurger  KPruessner  JCZinkowski  RDeBernardis  JKerkman  DLeinsinger  GEvans  ACDavies  PMöller  HJTeipel  SJ Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease.  Arch Neurol 2005;62 (5) 770- 773PubMedGoogle Scholar
36.
Helmer  CAndrieu  SPeres  KOrgogozo  JMVellas  BDartigues  JFREAL.fr Group, Predictive value of 6-month decline in ADAS-cog for survival without severe Alzheimer's disease.  Dement Geriatr Cogn Disord 2007;23 (3) 168- 174PubMedGoogle Scholar
37.
DeMattos  RBO'Dell  MAParsadanian  MTaylor  JWHarmony  JABales  KRPaul  SMAronow  BJHoltzman  DM Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease.  Proc Natl Acad Sci U S A 2002;99 (16) 10843- 10848PubMedGoogle Scholar
38.
Lidström  AMBogdanovic  NHesse  CVolkman  IDavidsson  PBlennow  K Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer's disease.  Exp Neurol 1998;154 (2) 511- 521PubMedGoogle Scholar
39.
Nilselid  AMDavidsson  PNagga  KAndreasen  NFredman  PBlennow  K Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms.  Neurochem Int 2006;48 (8) 718- 728PubMedGoogle Scholar
40.
Sihlbom  CDavidsson  PSjogren  MWahlund  LONilsson  CL Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer's disease patients and healthy individuals.  Neurochem Res 2008;33 (7) 1332- 1340PubMedGoogle Scholar
41.
Cutler  PAkuffo  ELBodnar  WMBriggs  DMDavis  JBDebouck  CMFox  SMGibson  RAGormley  DAHolbrook  JDHunter  AJKinsey  EEPrinjha  RRichardson  JCRoses  ADSmith  MATsokanas  NWillé  DRWu  WYates  JWGloge  IS Proteomic identification and early validation of complement 1 inhibitor and pigment epithelium-derived factor: two novel biomarkers of Alzheimer's disease in human plasma.  Proteomics Clin Appl 2008;2 (4) 467- 477Google Scholar
42.
Wilson  MRYerbury  JJPoon  S Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity.  Mol Biosyst 2008;4 (1) 42- 52PubMedGoogle Scholar
43.
Yerbury  JJPoon  SMeehan  SThompson  BKumita  JRDobson  CMWilson  MR The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures.  FASEB J 2007;21 (10) 2312- 2322PubMedGoogle Scholar
44.
Bell  RDSagare  APFriedman  AEBedi  GSHoltzman  DMDeane  RZlokovic  BV Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system.  J Cereb Blood Flow Metab 2007;27 (5) 909- 918PubMedGoogle Scholar
45.
French  KYerbury  JJWilson  MR Protease activation of α2-macroglobulin modulates a chaperone-like action with broad specificity.  Biochemistry 2008;47 (4) 1176- 1185PubMedGoogle Scholar
46.
Yerbury  JJKumita  JRMeehan  SDobson  CMWilson  MR α2-Macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species.  J Biol Chem 2009;284 (7) 4246- 4254PubMedGoogle Scholar
47.
Thambisetty  MHye  AFoy  CDaly  EGlover  ACooper  ASimmons  AMurphy  DLovestone  S Proteome-based identification of plasma proteins associated with hippocampal metabolism in early Alzheimer's disease.  J Neurol 2008;255 (11) 1712- 1720PubMedGoogle Scholar
Original Article
July 2010

Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease

Author Affiliations

Author Affiliations: King's College London, Institute of Psychiatry, London, England (Drs Thambisetty, Simmons, Velayudhan, Hye, Kinsey, Güntert, Proitsi, Powell, Causevic, Killick, Lunnon, Foy, Breen, Furney, Hodges, Murphy, and Lovestone; Mssrs Lynham and O’Brien; and Mss Tunnard and Leung); Proteome Sciences, Cobham, England (Dr Campbell; and Mssrs O’Brien and Ward); Department of Neurobiology, Care Sciences and Society, Section of Clinical Geriatrics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (Drs Zhang, Wahlund, and Westman); King's College London, Wolfson Centre for Age Related Disorders, London (Drs Broadstock, Choudhry, Howlett, Williams, Sharp, and Francis); Eucaryotic Cell Biology Research Group, Department of Science, Roskilde University, Roskilde, Denmark (Dr Mitchelmore); Department of Old Age Psychiatry & Psychotic Disorders, Medical University of Lodz, Lodz, Poland (Dr Kloszewska); Section of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy (Dr Mecocci); Department of Neurology, Kuopio University and University Hospital, Kuopio, Finland (Dr Soininen); Department of Neurology, Aristotle University, Thessaloniki, Greece (Dr Tsolaki); Department of Internal and Geriatrics Medicine, Hôpitaux de Toulouse, Toulouse, France (Dr Vellas); Neurosciences CEDD, GlaxoSmithKline, North Frontiers Science Park, Harlow, England (Dr Parkins); Synaptic Plasticity and Neural Network Dynamics DPU, Neurosciences CEDD, GlaxoSmithKline, North Frontiers Science Park, Harlow, England (Dr Richardson); Laboratory of Personality and Cognition (Dr Resnick), and Longitudinal Studies Section, Clinical Research Branch (Dr Ferrucci), Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore (Drs Wong and Zhou); Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada (Mr Muehlboeck and Dr Evans); and Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm (Dr Spenger). Dr Thambisetty is now with the Laboratory of Personality and Cognition, Intramural Research Program, National Institute on Aging, National Institutes of Health; and Dr Parkins is now with NHS London, London.

Arch Gen Psychiatry. 2010;67(7):739-748. doi:10.1001/archgenpsychiatry.2010.78
Abstract

Context  Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD).

Objective  To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach.

Design  Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model.

Setting  A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging.

Participants  Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging.

Main Outcome Measures  Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid.

Results  Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-β burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques.

Conclusions  These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.

×