Context
The original mild cognitive impairment (MCI) criteria exclude substantial functional deficits, but recent reports suggest otherwise. Identifying the extent, severity, type, and correlates of functional deficits that occur in MCI and mild Alzheimer disease (AD) can aid in early detection of incipient dementia and can identify potential mechanistic pathways to disrupted instrumental activities of daily living (IADLs).
Objectives
To examine the number, type, and severity of functional impairments and to identify the clinical characteristics associated with functional impairment across patients with amnestic MCI (aMCI) and those with mild AD.
Design
Study using baseline data from the Alzheimer's Disease Neuroimaging Initiative.
Setting
Multiple research sites in the United States and Canada.
Patients
Samples included 229 control individuals, 394 patients with aMCI, and 193 patients with AD.
Main Outcome Measure
The 10-item Pfeffer Functional Activities Questionnaire (FAQ) assessed function.
Results
Informant-reported FAQ deficits were common in patients with aMCI (72.3%) and AD (97.4%) but were rarely self-reported by controls (7.9%). The average severity per FAQ deficit did not differ between patients with aMCI and controls; both were less impaired than patients with AD (P < .001). Two FAQ items (remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers) were specific (specificity estimate, 0.95) in differentiating the control group from the combined aMCI and AD groups (only 34.0% of patients with aMCI and 3.6% of patients with AD had no difficulty with these 2 items). The severity of FAQ deficits in the combined aMCI and AD group was associated with worse Trail Making Test, part A scores and smaller hippocampal volumes (P < .001 for both). Within the aMCI group, functionally intact individuals had greater hippocampal volumes and better Auditory Verbal Learning Test 30-minute delay and Trail Making Test, part A (P < .001 for each) scores compared with individuals with moderate or severe FAQ deficits. Patients with a high number of deficits were more likely to express the apolipoprotein ε4 allele (63.8%) compared with patients with no (46.8%) or few (48.4%) functional deficits.
Conclusions
Mild IADL deficits are common in individuals with aMCI and should be incorporated into MCI criteria. Two IADLs—remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers—appear to be characteristic of clinically significant cognitive impairment. In patients with aMCI, impairment in memory and processing speed and greater medial temporal atrophy were associated with greater IADL deficits.
Functional impairment is a required criterion for the diagnosis of most major neuropsychiatric disorders, including dementia.1,2 Decreases in functional ability in elderly individuals can adversely affect patients and caregivers and are associated with institutionalization.3-8 Functional decline can occur as a result of several factors, including medical illness,9,10 mood disorders,11-14 and cognitive impairment.15-17 Identifying the extent and severity of functional deficits that typically occur in each disorder can aid in early diagnosis, help in estimating prognosis, and improve treatment strategies.18
The term mild cognitive impairment (MCI)19,20 is used to identify a stage of impairment that demonstrates considerable heterogeneity and is displayed by individuals at high risk for conversion to dementia.19 The MCI criteria require reports of subjective memory deficits and a score 1.5 SDs below age-adjusted norms on a memory test (amnestic MCI [aMCI]) and require no “substantial interference with work, usual social activities, or other activities of daily living.”20However, research has shown that individuals with aMCI commonly have deficits in instrumental activities of daily living (IADLs).21-28 Our group reported that in participants with MCI, baseline informant-reported functional deficits on the Pfeffer Functional Activities Questionnaire (FAQ)25 were associated with a 4-fold increase in conversion to dementia during long-term follow-up.29
The goals of this study were to examine the number, type, and severity of functional impairments across patients with aMCI and those with mild Alzheimer Disease (AD), comparing them with healthy, cognitively intact control individuals; to identify the clinical characteristics that explain functional impairment in individuals with aMCI and mild AD; and to explore the neuropsychological and neuroanatomical profiles in relation to functional deficits in individuals with aMCI. Baseline data from the Alzheimer's Disease Neuroimaging Initiative (ADNI)30 were used to address these goals.
Alzheimer's disease neuroimaging initiative
Data used for preparation of this article were obtained from the ADNI database (http://adni.loni.ucla.edu/), a project launched in 2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, and various private pharmaceutical companies and nonprofit organizations as a $60 million, 5-year public-private partnership. The primary goal of the ADNI is to test whether serial magnetic resonance imaging, positron emission tomography, other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early AD.
Data obtained from the ADNI in October 2009 were selected from screening or baseline visits of all participants who completed evaluations that included the key variables of interest to this report. The sample comprised 229 cognitively intact older adults, 394 individuals with aMCI, and 193 individuals with mild AD. The demographic, neuropsychological, and functional characteristics for these 3 groups are listed in Table 1.
Participants were enrolled if they were aged 55 to 90 years, had at least 6 years of educational attainment, spoke English or Spanish as their primary language, agreed to undergo longitudinal follow-up and neuroimaging tests, and had a study partner to monitor adherence. Cognitively intact participants had Mini-Mental State Examination (MMSE)31 scores between 24 and 30, Clinical Dementia Rating (CDR)32 scores of 0 (no dementia), and no significant memory concerns. The aMCI participants were classified as having single-domain or multidomain aMCI according to the Petersen criteria19: a CDR score of 0.5, MMSE scores between 24 and 30, 1 or more memory problems as verified by an informant, a memory score classified as abnormal (1.5 SDs below the age-adjusted cutoff) on the Logical Memory II subscale (delayed paragraph recall) from the Wechsler Memory Scale–Revised,33 and absence of a diagnosis of dementia as made by onsite physicians. Participants with mild AD had a CDR score of 0.5 or 1.0, had MMSE scores between 20 and 26, and met criteria for probable AD.2 All participants had a Geriatric Depression Scale34 score of less than 6 (no significant depression) and a modified Hachinski score35 of 4 or less (no significant vascular impairment, including hypertension, stroke, and/or neurologic signs or symptoms). A more detailed account of the inclusion and exclusion criteria is available at http://www.adni.loni.ucla.edu/about/about-the-study/.
Neuropsychological assessment
At baseline, participants underwent an extensive neuropsychological battery. We selected specific cognitive measures a priori because they assess cognitive functions shown in prior research15-17 to correlate with functional impairment; these measures include the Trail Making Test, parts A and B;36 the Digit Symbol Substitution Test of the Wechsler Adult Intelligence Scale–Revised;37 and the Auditory Verbal Learning Test (AVLT).38
The FAQ25 is a 10-item IADL measure (Table 2). Self-reports of functional deficits were collected for controls, but informant reports were collected for the aMCI and AD groups. Each item is rated from 0 (no difficulty or independent) to 3 (dependent). Analyses classified functional impairment in 1 of 3 ways: total severity (total sum score from all 10 items; range, 0-30), total number of deficits (total sum score of dichotomized items, with 0 indicating no difficulty and 1 indicating any difficulty; range, 0-10),26 and average severity per deficit (total severity divided by total number of deficits). The means and standard deviations for each and selected medians (with ranges) are listed in Table 1.
Imaging volume derivations
Hippocampal (derived by adding right and left hippocampal volumes), entorhinal, and intracranial volumes were downloaded from postprocessed image analysis using FreeSurfer, version 4.3.0, by researchers at the University of California, San Francisco; the data are available at http://adni.loni.ucla.edu/. We used the cross-sectional baseline data recommended for use by the ADNI investigators. A detailed account of the volume derivation process is located at http://www.loni.ucla.edu/twiki/bin/view/ADNI/ADNIPostProc.
Analysis of variance or χ2 tests were used to detect group differences for continuous and categorical variables. Analysis of covariance was used for group comparison on all brain volumetric measures with intracranial volume as the covariate. A stepwise selection procedure for item selection from a unidimensional scale was used to identify a subset of FAQ items that best differentiated controls from patients with aMCI.39 To obtain a reliable subset of items classifying the 2 groups with accuracy similar to that of the full scale, we applied the procedure with a significance criterion of .05 for item contribution to the subset classification accuracy to 500 bootstrap samples, including the item response data of the controls and patients with aMCI randomly sampled with replacement from the study sample, choosing the items most frequently selected (included in >50% of bootstrap samples). The area under the receiver operating characteristic curve was used to compare the usefulness of the identified FAQ subset with the full 10-item FAQ in differentiating controls and patients with aMCI. In addition, for potential clinical applicability, the sensitivity and specificity of a 2-item subset were assessed. Linear regression models were used to examine the relationship between the FAQ and demographic, physical, depression, neuropsychological, and neuroimaging characteristics in a combined aMCI and AD group and in the aMCI group only. Within the aMCI group, linear models were used to calculate the covariate-adjusted means of the neuropsychological and neuroimaging variables identified in the linear regression analysis across the 3 categorized ordinal classes of number of FAQ deficits and severity of FAQ deficits (a functionally intact group and the functionally impaired group split into categories based on number and severity of functional deficits). In post hoc group comparisons, Bonferroni correction on the false-positive error rate was used to account for multiple comparisons. Multinomial logistic regression models for the trichotomized functional severity and number of functional deficits scores were used to assess the simultaneous effect of the neuropsychological, genetic, and neuroimaging variables identified in the linear regression analysis.
Extent and severity of functional deficits across cognitively impaired groups
Demographic, neuropsychological, and functional variables (Table 1) differed significantly by group with the exception of age. Item distributions among the 10-item FAQ showed an increased number of functional deficits across study groups (F2813 = 494.99, P < .001): 7.9% of controls, 72.3% of informants for the aMCI group, and 97.4% of informants for the mild-AD group reported 1 or more functional deficit. In the AD group, 87.0% of informants reported 4 or more total deficits. As indicated in Table 1, total severity scores of functional impairment significantly increased across groups (F2813= 438.60, P < .001). The average level of severity per deficit did not differ, however, between the control (mean [SD], 1.25 [0.52]) and aMCI (mean [SD], 1.34 [0.43]) groups, but the mild-AD group (mean [SD], 1.78 [0.50]) had greater average severity per functional deficit than both of the other groups (F2488 = 56.27, P < .001). Informant-reported deficits in the aMCI sample were fewer and milder in severity than those reported for the mild-AD group. In fact, 78.7% of informants for the aMCI group endorsed 0 (no difficulty) or 1 (patient has difficulty but still does the task by himself/herself) on each of the 10 FAQ items; this finding contrasts with that of 25.4% to 66.3% of informants of the mild-AD group who reported a score of 2 (requires assistance) or 3 (dependent) for 8 of the 10 FAQ items (only 12.4% and 15.5% of informants from the mild-AD group reported a score of 2 or 3 on item 5 [heating water, making a cup of coffee, turning off the stove] and item 8 [paying attention to and understanding a television program, book, or magazine], respectively).
Table 2 lists the percentage of deficits by item within each diagnostic group. Although few controls self-reported any functional deficits on the individual FAQ items, informants for the aMCI group most commonly reported deficits for item 1 (writing checks, paying bills, or balancing checkbook; 33.8%), item 2 (assembling tax records, business affairs, or other papers; 42.9%), and item 9 (remembering appointments, family occasions, holidays, and medications; 54.8%). These 3 items increased markedly in frequency on the Cochran-Armitage linear trend tests from controls to patients with aMCI to patients with AD, but the frequency of other items, such as item 5 (heating water, making a cup of coffee, turning off the stove), increased less so across groups (Table 2). To identify those items that most commonly differentiated the control and aMCI groups, an item selection process was used. The subset selected had a median size of 6; the 6-item subset (items 2, 4, 7, 8, 9, and 10) was the most frequently selected in the 500 bootstrap samples and differentiated the control and aMCI groups with classification accuracy (0.6998) similar that of the full 10-item scale (0.7067).
The evaluation of 6 IADLs (including the ability to assemble tax records, business affairs, or other papers; to play a game of skill such as bridge or chess or work on a hobby; to keep track of current events; to pay attention to and understand a television program, book, or magazine; to remember appointments, family occasions, holidays, and medications; and to travel outside the neighborhood, drive, or arrange to take public transportation) does not represent a marked time savings compared with the 10-item FAQ for use in clinical practice. Two of these 6 items were selected in each of the 500 bootstrap samples. These 2 items (assembling tax records, business affairs, or other papers; and remembering appointments, family occasions, holidays, and medications) were highly effective in discriminating the control group from a combined aMCI and mild-AD group. Although only 3.5% (n = 12) of healthy controls reported deficits on 1 of these 2 items (no controls reported deficits in both), 66.0% of informants for the aMCI group and 96.4% of informants for the mild-AD group reported deficits on 1 of these 2 items; 85.5% of the mild-AD group had informant-reported deficits on both items. Comparing controls with the combined aMCI and AD groups, these numbers are reflected in the sensitivity (0.76 vs 0.81) and specificity (0.95 vs 0.92) estimates comparing the 2-item FAQ and 10-item FAQ, respectively, with a cut point of 1 functional deficit or more.
The control group consisted of cognitively intact older adults who used self-report assessments, thereby making it difficult to compare these rates with those reported by informants for the aMCI and AD groups. Therefore, healthy controls were excluded from subsequent analyses.
FACTORS ASSOCIATED WITH FUNCTIONAL DEFICITS IN aMCI AND MILD-AD GROUPS
The bivariate relationships in the combined aMCI and AD groups between functional impairment and demographics (age, sex, and educational level), physical health (Hachinski score, which assesses history of hypertension, stroke, and neurologic signs and symptoms), depression (Geriatric Depression Scale), brain volumes (intracranial, hippocampal, and entorhinal cortex volumes), apolipoprotein (APOE) ε4 allele status (present or absent), and neuropsychological variables (Trail Making Test, parts A and B; AVLT 30-minute delay; and Digit Symbol) showed significant associations between functional impairment and brain volumes, APOE ε4 status, and the neuropsychological variables (P < .01). Linear regression analyses in the combined aMCI and AD group were used to identify variables associated with functional impairment after controlling for all other independent variables. Three aspects of functional impairment served as outcome variables in separate analyses: total severity score, total number of deficits, and average severity per deficit score. In each regression analysis the demographic, physical health, depression, brain volume, genetic, and neuropsychological variables were entered simultaneously into the model. The independent variables explained 30.8% of the variance in total severity (F13 545= 18.65, P < .001), 29.4% of the variance in total number of deficits (F13 545= 17.44, P < .001), and 17.8% of the variance in average severity per deficit (F13 438= 7.30, P < .001). Two independent variables were significant in each of the analyses: hippocampal volume (Ptotal severity < .001; Ptotal number < .001; Pseverity per deficit = .001) and Trail Making Test, part A score (Ptotal severity = .001; Ptotal number < .001; Pseverity per deficit = .004). Three other independent variables were associated with total severity and total number of deficits: age (Ptotal severity = .044; Ptotal number = .008), AVLT 30-minute delay score (Ptotal severity = .004; Ptotal number < .001), and entorhinal cortex volume (Ptotal severity= .03; Ptotal number = .048). The effect of these independent variables remained significant and the R2 virtually unchanged when the independent variables that did not contribute to the models were excluded.
PROFILES OF INFORMANT-REPORTED FUNCTIONAL IMPAIRMENT IN THE aMCI GROUP
To identify variables uniquely associated with functional deficits in the aMCI stage, linear regression analyses were conducted with the aMCI group with total severity and total number of functional deficit scores serving as the outcome variables. As in the combined aMCI and AD analysis, the demographic, physical health, depression, brain volume, genetic, and neuropsychological variables were entered simultaneously into the model. The independent variables explained 13.3% of the variance in total severity (F13 365 = 4.29, P < .001) and 13.2% of the variance in total number of deficits (F13 365 = 4.28, P < .001). Hippocampal volume (Ptotal severity = .01; Ptotal number = .03); AVLT 30-minute delay score (Ptotal severity = .04; Ptotal number = .01); and Trail Making Test, part A score (Ptotal severity= .009; Ptotal number = .005) predicted each of the functional outcomes. Digit Symbol score predicted total severity (P = .03) but not total number of deficits (P = .28). Status regarding APOE ε4 predicted total number of deficits (P = .049) but not total severity (P = .09). The effect of these independent variables remained significant and the R2 virtually unchanged when the independent variables that did not contribute to the models were excluded.
To investigate these relationships further comparing individuals with aMCI who have and those who do not have functional impairment, analyses of covariance and post hoc comparisons adjusting for age, sex, and educational level (and intracranial volume in the hippocampal volume analysis) were conducted for the 6 independent variables (including age) identified as significant in the linear models (Figure 1 and Figure 2). Total functional severity scores were categorized into 3 groups: functionally intact (total severity scores = 0; n = 109), mild (total severity scores, 1-4; n = 162), and moderate to severe (total severity scores ≥5; n = 123). The functionally intact and mild severity groups performed more strongly on the Trail Making Test, part A (P < .001), Digit Symbol test (P < .001), and AVLT 30-minute delay (Pintact < .001 and Pmild = .001, respectively) than the moderate to severe group;the adjusted means for the functionally intact group did not differ from the mild group on the Trail Making Test, part A (P = .36) and Digit Symbol test (P = .07) but differed on AVLT 30-minute delay (P = .01; Figure 1A and B). The adjusted mean hippocampal volumes in the functionally intact group were larger than those in the moderate to severe group (P < .001) and the mild group, although the latter did not reach significance (P = .06); the adjusted mean hippocampal volume for the mild group was larger than that in the moderate to severe group (P = .02; Figure 2A), although the difference did not reach the Bonferroni corrected significance level.
Similar analyses of covariance and post hoc comparisons (Figures 1 and 2) were conducted for total number of functional deficits categorized into 3 groups: functionally intact (total deficits, 0; n = 109), few deficits (total deficits, 1-3; n = 155), and high number of deficits (total deficits, ≥4; n = 130). Again, the functionally intact group differed from the high deficit group regarding Trail Making Test, part A scores (P < .001); AVLT 30-minute delay scores (P < .001); and hippocampal volume (P < .001; Figure 1C and D and Figure 2B). A higher percentage of individuals had positive expression for the APOE ε4 allele in the high deficit group (63.8%) compared with the functionally intact (46.8%) or few deficit (48.4%) groups.
Finally, multinomial logistic regression analyses assessed the simultaneous effect of these significant independent variables on the trichotomized functional severity and the number of functional deficit groups, with the functionally intact group serving as the reference category in each analysis with age, sex, educational level, and intracranial volume entered as covariates into each model. Table 3 lists the odds ratios for the group comparisons in the models. These comparisons mirror the results of the post hoc analyses: the functionally intact group performed better on the Trail Making Test, part A (P = .006) and the AVLT 30-minute delay (P < .001) than the moderate to severe and high deficit groups (P < .001 for Trail Making Test, part A and AVLT 30-minute delay) in each logistic model; the functionally intact group also had greater hippocampal volume than the moderate to severe (P = .02) and high deficit (P = .04) groups. None of the functionally intact vs few deficit group or functionally intact vs mild severity group comparisons were significant (Table 3).
Extent and specific functional impairments across groups
Functional impairment is necessary to make a diagnosis of dementia,2 but the Petersen criteria for MCI stipulate no “substantial” functional impairments.19,20 The present study, however, found that 72.3% of informants of individuals with aMCI reported 1 or more deficits in daily functioning compared with 97.4% with mild AD and 7.9% of self-reported healthy controls. This proportion of functional impairment in the aMCI group is consistent with previous findings identifying IADL deficits in patients with MCI.15,17,21,22,26,28,29 The severity of these impairments, however, was mild; that is, individuals with aMCI show difficulty in IADL functioning, but this difficulty does not require the assistance of others. Only 1.8% to 21.3% of informants reported that individuals with aMCI require assistance or were dependent per the IADLs assessed. This finding contrasts with those of patients with mild AD, of whom 12.4% to 66.3% of informants reported that those patients required assistance or were dependent per most of the IADLs assessed. Thus, physicians should be sensitive to mild informant-reported deficits at the aMCI stage, which is often a precursor to the diagnosis of dementia.
To aid physicians in the ability to detect impairment early in the dementia process, we identified 6 IADLs that distinguished controls from individuals with aMCI. Two of these items in particular, remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers, may improve the ability of physicians to briefly identify aMCI functional impairment. These 2 items were highly specific in their ability to differentiate controls from the 2 combined cognitively impaired groups. Only 34.0% of individuals with aMCI (and 3.6% of individuals with AD) have intact informant-reported functioning on both items. These findings highlight the types of daily activities that are disrupted during different stages of cognitive impairment and specifically identified 2 daily tasks that physicians can use to differentiate controls from cognitively impaired individuals.
The results of this study support recent proposals to modify the Petersen criteria for MCI to reflect these deficits in complex instrumental functions.40,41 Although basic activities of daily living usually remain intact in aMCI, mild IADL deficits often appear to occur in aMCI. The aMCI group in this study was rigorously defined according to the Peterson criteria for aMCI,19 yet it still represents a heterogeneous stage of cognitive impairment. Other classification systems have been used to define cognitive impairment, and each of these systems is likely to differ in the extent and severity of IADL deficits and each identifies slightly different clinical courses and outcomes.42 These findings represent a reminder that the MCI classification system denotes a continuum of impairment, and impairments based on the extent and severity of daily functioning can play an important role in defining where on this continuum a cognitively impaired individual can be classified. Greater functional deficits, associated with greater medial temporal atrophy, memory, and processing speed deficits, can aid practicing physicians and researchers in interpreting the point in the predementia stage in which the patient should be classified and can help predict the speed at which the condition of that patient will convert to dementia.26,29 Aiding in earlier identification of the disease stage can lead to earlier enrollment of patients in clinical trials for treatment of cognitive impairment, earlier financial and estate planning, the designation of health care proxies, and the preparation of families for the future responsibility and cost of providing care for the patient. These findings show that even mild disruptions in daily functioning may be an important clinical indicator of disease and represent the latter phases of disease progression within the MCI classification system for cognitive impairment.43
Factors associated with functional deficits in cognitively impaired individuals
Past studies have identified strong associations between functional impairment and medical illness,9,10 mood disorders,11-14 and cognitive impairment.15-17 This study found that functional impairment (total severity, total number, and average severity per deficit) was associated with smaller hippocampal volumes and decreased processing speed in the combined aMCI and AD group. Functional severity and total number of functional deficits were also associated with worse memory performance per the AVLT 30-minute delay and decreased entorhinal cortex volumes.
Within the aMCI group, the associations among memory deficits (as measured by the AVLT 30-minute delay and decreased hippocampal volume), processing speed decrements (per Trail Making Test, part A score), and greater functional impairment again were identified. Distinct heterogeneity was observed within the aMCI group illustrated in the post hoc and logistic models. Although the trends across groups for the severity and number of functional deficits analyses showed that with increasing deficits in daily activities, impairment in memory and processing speed and medial temporal atrophy worsened, the strongest difference was observed between the functionally intact and moderate to severe or high deficit groups. The moderate to severe and high number of functional deficits groups with aMCI had greater hippocampal atrophy and impairment in memory and speed of processing compared with the functionally intact individuals with aMCI.
These results illustrate 2 possible mechanistic pathways that contribute to functional impairment in cognitively impaired individuals. One potential pathway, memory dysfunction, is represented by neuropsychological measures (ie, the AVLT 30-minute delay) and neurobiological markers (ie, increased medial temporal atrophy). This finding is consistent with past findings showing increased atrophy in the 2 areas of the brain consistently associated with AD, the hippocampus and the entorhinal cortex.29,44,45 Speed of processing marks the second potential pathway associated with functional impairment. Processing speed declines with age.46,47 Although researchers have focused on the association between executive dysfunction and daily functional deficits,48 the present study concurs with recent findings by Wadley and colleagues,15 who showed that individuals with aMCI differed from healthy controls in speed of processing on a financial performance measure. These findings intimate that gradual decreases in processing speed that occur with normal aging may accelerate in individuals with incipient dementia. We speculate that processing speed decrements may mark the initial onset of milder deficits in daily functioning, but executive dysfunction may lead to more severe impairments in daily functioning as the disease progresses. Longitudinal data need to be examined to test this hypothesis.
The status of APOE ε4, a genetic marker shown to increase risk of developing Alzheimer disease,49 was associated with an increased number of informant-reported functional deficits in the aMCI group. Those individuals with aMCI who had a positive expression for the APOE ε4 allele had a greater number of functional deficits, although not more severe deficits, than those without the APOE ε4 allele. Individuals with an APOE ε4 allele may be predisposed to earlier onset of impairments in daily functioning, consistent with the increased risk of incipient dementia conferred by the presence of the APOE ε4 allele.49However, these disruptions in daily activities do not require overt assistance by or overall dependence on spouses, family members, or friends.
The study has some design limitations. It used carefully selected individuals who agreed to participate in a research study with intensive serial procedures during an extended period. Part of the selection criteria included the exclusion of significant depressive symptoms or coexisting medical disorders, such as vascular impairment. Although the present study illustrated that functional deficits partly overlap with cognitive deficits (specifically, memory impairment and processing speed deficits)15,16 and in part may be considered a consequence of these impairments, the moderate amount of explained variance between functional and cognitive deficits in this study and another50 suggests that other factors contribute to the development of these deficits. Possible contributing factors to increased functional deficits include physical10 and psychological14 comorbidities, but these comorbidities were excluded in this sample. The exclusion of moderate to severe depression, in particular, hinders generalizability of these findings because depression is common in patients with cognitive impairment, and the bidirectional relationship between depression and functional impairment is well established.51 The use of different assessment methods (self-report for controls and informant report for the aMCI and mild-AD groups) makes cross-comparisons between the cognitively impaired and cognitively intact groups difficult. Previous research has shown that self-reports can underreport symptoms in part due to worsening cognitive impairment and awareness,17,21,26 but informant reports in AD may overreport symptoms perhaps due to caregiver burden.52 Performance-based measures53 may reflect more accurately the ability of the patient to perform specific behaviors, although this remains to be established; performance-based measures were not evaluated in this study.
In conclusion, this study shows that mild deficits in daily activities are common in the aMCI stage of cognitive impairment and that this impairment should be considered in the MCI criteria. Functionally impaired individuals with aMCI had greater medial temporal atrophy and deficits in memory and processing speed compared with functionally intact individuals with aMCI. Future research should investigate the onset and course of functional impairment longitudinally to discern whether deficits in memory and processing speed or greater medial temporal atrophy are associated with the onset and progression of functional deficits during the disease process.
Correspondence: Patrick J. Brown, PhD, Division of Geriatric Psychiatry, New York State Psychiatric Institute, 1051 Riverside Dr, Unit 126, New York, NY 10032 (pb2410@columbia.edu).
Submitted for Publication: April 29, 2010; final revision received November 22, 2010; accepted November 26, 2010.
Author Contributions: Drs Brown and Devanand had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
Financial Disclosures: Dr Devanand has received research support from Novartis AG and Eli Lilly and Company and has served as a consultant to Bristol-Myers Squibb and sanofi-aventis.
Funding/Support: Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant U01 AG024904). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from Abbott Laboratories, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation plc, Genentech Inc, GE Healthcare, GlaxoSmithKline plc, Innogenetics, Johnson & Johnson Services Inc, Eli Lilly and Company, Medpace Inc, Merck and Co Inc, Novartis AG, Pfizer Inc, F. Hoffman–La Roche Ltd, Schering-Plough Corporation, Synarc Inc, and Wyeth Ltd, as well as nonprofit partners the Alzheimer's Association and the Alzheimer's Drug Discovery Foundation, with participation from the US Food and Drug Administration. Private sector contributions to the ADNI are facilitated by the Foundation for the National Institutes of Health (http:// www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. The ADNI data are disseminated by the Laboratory of Neuro Imaging at the University of California, Los Angeles. This research also was supported by National Institutes of Health grants P30 AG010129 and K01 AG030514. Also, the Dana Foundation supported Dr Devanand (grant R01AG17761) and Dr Brown (grant T32 MH20004).
Additional Information: Data used in the preparation of this article were obtained from the ADNI database (http://adni.loni.ucla.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
1.American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders. 4text revision Washington, DC American Psychiatric Association2000;
2.McKhann
GDrachman
DFolstein
MKatzman
RPrice
DStadlan
EM Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease.
Neurology 1984;34
(7)
939- 944
PubMedGoogle ScholarCrossref 3.Ballard
CO’Brien
JTJames
IMynt
PLana
MPotkins
DReichelt
KLee
LSwann
AFossey
J Quality of life for people with dementia living in residential and nursing home care: the impact of performance on activities of daily living, behavioral and psychological symptoms, language skills, and psychotropic drugs.
Int Psychogeriatr 2001;13
(1)
93- 106
PubMedGoogle ScholarCrossref 4.González-Salvador
TLyketsos
CGBaker
AHovanec
LRoques
CBrandt
JSteele
C Quality of life in dementia patients in long-term care.
Int J Geriatr Psychiatry 2000;15
(2)
181- 189
PubMedGoogle ScholarCrossref 5.Newsom
JTSchulz
R Social support as a mediator in the relation between functional status and quality of life in older adults.
Psychol Aging 1996;11
(1)
34- 44
PubMedGoogle ScholarCrossref 6.Newsom
JTSchulz
R Caregiving from the recipient's perspective: negative reactions to being helped.
Health Psychol 1998;17
(2)
172- 181
PubMedGoogle ScholarCrossref 7.Hope
TKeene
JGedling
KFairburn
CGJacoby
R Predictors of institutionalization for people with dementia living at home with a carer.
Int J Geriatr Psychiatry 1998;13
(10)
682- 690
PubMedGoogle ScholarCrossref 9.Auyeung
TWKwok
TLee
JLeung
PCLeung
JWoo
J Functional decline in cognitive impairment—the relationship between physical and cognitive function.
Neuroepidemiology 2008;31
(3)
167- 173
PubMedGoogle ScholarCrossref 10.Fried
LPTangen
CMWalston
JNewman
ABHirsch
CGottdiener
JSeeman
TTracy
RKop
WJBurke
GMcBurnie
MACardiovascular Health Study Collaborative Research Group, Frailty in older adults: evidence for a phenotype.
J Gerontol Aging Biol Sci Med Sci 2001;56
(3)
M146- M156
PubMedGoogle ScholarCrossref 11.Ani
CBazargan
MHindman
DBell
DFarooq
MAAkhanjee
LYemofio
FBaker
RRodriguez
M Depression symptomatology and diagnosis: discordance between patients and physicians in primary care settings.
BMC Fam Pract 2008;91- 9
PubMedGoogle ScholarCrossref 12.Onyike
CUSheppard
JMTschanz
JTNorton
MCGreen
RCSteinberg
MWelsh-Bohmer
KABreitner
JCLyketsos
CG Epidemiology of apathy in older adults: the Cache County Study.
Am J Geriatr Psychiatry 2007;15
(5)
365- 375
PubMedGoogle ScholarCrossref 13.Starkstein
SEJorge
RMizrahi
RRobinson
RG A prospective longitudinal study of apathy in Alzheimer's disease.
J Neurol Neurosurg Psychiatry 2006;77
(1)
8- 11
PubMedGoogle ScholarCrossref 14.Elderkin-Thompson
VBallmaier
MHellemann
GPham
DLavretsky
HKumar
A Daily functioning and prefrontal brain morphology in healthy and depressed community-dwelling elderly.
Am J Geriatr Psychiatry 2008;16
(8)
633- 642
PubMedGoogle ScholarCrossref 15.Wadley
VGOkonkwo
OCrowe
MRoss-Meadows
LA Mild cognitive impairment and everyday function: evidence of reduced speed in performing instrumental activities of daily living.
Am J Geriatr Psychiatry 2008;16
(5)
416- 424
PubMedGoogle ScholarCrossref 16.Pereira
FSYassuda
MSOliveira
AMForlenza
OV Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment.
Int Psychogeriatr 2008;20
(6)
1104- 1115
PubMedGoogle ScholarCrossref 17.Okonkwo
OCWadley
VGGriffith
HRBelue
KLanza
SZamrini
EYHarrell
LEBrockington
JCClark
DRaman
RMarson
DC Awareness of deficits in financial abilities in patients with mild cognitive impairment: going beyond self-informant discrepancy.
Am J Geriatr Psychiatry 2008;16
(8)
650- 659
PubMedGoogle ScholarCrossref 18.Patterson
TLHarvey
P Real-world functioning and self-evaluation of functioning: brain structure, mood state, functional skills, and mortality.
Am J Geriatr Psychiatry 2008;16
(8)
617- 620
PubMedGoogle ScholarCrossref 19.Petersen
RCSmith
GEWaring
SCIvnik
RJTangalos
EGKokmen
E Mild cognitive impairment: clinical characterization and outcome.
Arch Neurol 1999;56
(3)
303- 308
PubMedGoogle ScholarCrossref 20.Knopman
DSBoeve
BFPetersen
RC Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia.
Mayo Clin Proc 2003;78
(10)
1290- 1308
PubMedGoogle ScholarCrossref 21.Albert
SMMichaels
KPadilla
MPelton
GHBell
KMarder
KStern
YDevanand
DP Functional significance of mild cognitive impairment in elderly patients without a dementia diagnosis.
Am J Geriatr Psychiatry 1999;7
(3)
213- 220
PubMedGoogle ScholarCrossref 22.Farias
STMungas
DReed
BRHarvey
DCahn-Weiner
DDecarli
C MCI is associated with deficits in everyday functioning.
Alzheimer Dis Assoc Disord 2006;20
(4)
217- 223
PubMedGoogle ScholarCrossref 23.Lawton
MPBrody
EM Assessment of older people: self-maintaining and instrumental activities of daily living.
Gerontologist 1969;9
(3)
179- 186
PubMedGoogle ScholarCrossref 24.Pérès
KHelmer
CAmieva
HOrgogozo
J-MRouch
IDartigues
J-FBarberger-Gateau
P Natural history of decline in instrumental activities of daily living performance over the 10 years preceding the clinical diagnosis of dementia: a prospective population-based study.
J Am Geriatr Soc 2008;56
(1)
37- 44
PubMedGoogle ScholarCrossref 25.Pfeffer
RIKurosaki
TTHarrah
CH
JrChance
JMFilos
S Measurement of functional activities in older adults in the community.
J Gerontol 1982;37
(3)
323- 329
PubMedGoogle ScholarCrossref 26.Tabert
MHAlbert
SMBorukhova-Milov
LCamacho
YPelton
GHLiu
XStern
YDevanand
DP Functional deficits in patients with mild cognitive impairment: prediction of AD.
Neurology 2002;58
(5)
758- 764
PubMedGoogle ScholarCrossref 27.Marson
DCSawrie
SMSnyder
SMcInturff
BStalvey
TBoothe
AAldridge
TChatterjee
AHarrell
LE Assessing financial capacity in patients with Alzheimer disease: a conceptual model and prototype instrument.
Arch Neurol 2000;57
(6)
877- 884
PubMedGoogle ScholarCrossref 28.Wadley
VGOkonkwo
OCrowe
MVance
DEElgin
JMBall
KKOwsley
C Mild cognitive impairment and everyday function: an investigation of driving performance.
J Geriatr Psychiatry Neurol 2009;22
(2)
87- 94
PubMedGoogle ScholarCrossref 29.Devanand
DPLiu
XTabert
MHPradhaban
GCuasay
KBell
Kde Leon
MJDoty
RLStern
YPelton
GH Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease.
Biol Psychiatry 2008;64
(10)
871- 879
PubMedGoogle ScholarCrossref 30.Mueller
SGWeiner
MWThal
LJPetersen
RCJack
CJagust
WTrojanowski
JQToga
AWBeckett
L The Alzheimer's Disease Neuroimaging Initiative.
Neuroimaging Clin N Am 2005;15
(4)
869- 877, xi-xii
PubMedGoogle ScholarCrossref 31.Folstein
MFFolstein
SEMcHugh
PR “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician.
J Psychiatr Res 1975;12
(3)
189- 198
PubMedGoogle ScholarCrossref 33.Wechsler
DA Wechsler Memory Scale–Revised Manual. San Antonio, TX Psychological Corporation1987;
34.Sheikh
JIYesavage
JA Geriatric Depression Scale (GDS): recent evidence and development of a shorter version.
Clin Gerontol 1986;5165- 172
Google ScholarCrossref 35.Hachinski
VCIliff
LDZilhka
EDu Boulay
GHMcAllister
VLMarshall
JRussell
RWRSymon
L Cerebral blood flow in dementia.
Arch Neurol 1975;32
(9)
632- 637
PubMedGoogle ScholarCrossref 36.Reitan
R The validity of the Trail-Making Test as an indication of organic brain damage.
Percept Mot Skills 1958;8271- 276
Google ScholarCrossref 37.Wechsler
DA Manual for the Wechsler Adult Intelligence Scale–Revised. New York, NY Psychological Corp1981;
38.Rey
A L’Examen clinique en psychologie. Paris, France Presses Universitaires de France1964;
40.Winblad
BPalmer
KKivipelto
MJelic
VFratiglioni
LWahlund
L-ONordberg
ABäckman
LAlbert
MAlmkvist
OArai
HBasun
HBlennow
Kde Leon
MDeCarli
CErkinjuntti
TGiacobini
EGraff
CHardy
JJack
CJorm
ARitchie
Kvan Duijn
CVisser
PPetersen
RC Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment.
J Intern Med 2004;256
(3)
240- 246
PubMedGoogle ScholarCrossref 41.Portet
FOusset
PJVisser
PJFrisoni
GBNobili
FScheltens
PHVellas
BTouchon
JMCI Working Group of the European Consortium on Alzheimer's Disease (EADC); Report of the MCI Working Group of the European Consortium on Alzheimer's Disease, Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure.
J Neurol Neurosurg Psychiatry 2006;77
(6)
714- 718
PubMedGoogle ScholarCrossref 42.Stephan
BCMMatthews
FEMcKeith
IGBond
JBrayne
CMedical Research Council Cognitive Function and Aging Study, Early cognitive change in the general population: how do different definitions work?
J Am Geriatr Soc 2007;55
(10)
1534- 1540
PubMedGoogle ScholarCrossref 43.Aisen
PSPetersen
RCDonohue
MCGamst
ARaman
RThomas
RGWalter
STrojanowski
JQShaw
LMBeckett
LAJack
CR
JrJagust
WToga
AWSaykin
AJMorris
JCGreen
RCWeiner
MWAlzheimer's Disease Neuroimaging Initiative, Clinical core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans.
Alzheimers Dement 2010;6
(3)
239- 246
PubMedGoogle ScholarCrossref 44.Devanand
DPPradhaban
GLiu
XKhandji
ADe Santi
SSegal
SRusinek
HPelton
GHHonig
LSMayeux
RStern
YTabert
MHde Leon
MJde Leon
MJ Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease.
Neurology 2007;68
(11)
828- 836
PubMedGoogle ScholarCrossref 45.Stoub
TRBulgakova
MLeurgans
SBennett
DAFleischman
DTurner
DAdeToledo-Morrell
L MRI predictors of risk of incident Alzheimer disease: a longitudinal study.
Neurology 2005;64
(9)
1520- 1524
PubMedGoogle ScholarCrossref 48.Vaughan
LGiovanello
K Executive function in daily life: age-related influences of executive processes on instrumental activities of daily living.
Psychol Aging 2010;25
(2)
343- 355
PubMedGoogle ScholarCrossref 49.Wolk
DADickerson
BCAlzheimer's Disease Neuroimaging Initiative, Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer's disease.
Proc Natl Acad Sci U S A 2010;107
(22)
10256- 10261
PubMedGoogle ScholarCrossref 50.Okonkwo
OCWadley
VGGriffith
HRBall
KMarson
DC Cognitive correlates of financial abilities in mild cognitive impairment.
J Am Geriatr Soc 2006;54
(11)
1745- 1750
PubMedGoogle ScholarCrossref 51.Lenze
EJRogers
JCMartire
LMMulsant
BHRollman
BLDew
MASchulz
RReynolds
CF
III The association of late-life depression and anxiety with physical disability: a review of the literature and prospectus for future research.
Am J Geriatr Psychiatry 2001;9
(2)
113- 135
PubMedGoogle ScholarCrossref 52.Argüelles
SLoewenstein
DAEisdorfer
CArgüelles
T Caregivers' judgments of the functional abilities of the Alzheimer's disease patient: impact of caregivers' depression and perceived burden.
J Geriatr Psychiatry Neurol 2001;14
(2)
91- 98
PubMedGoogle ScholarCrossref 53.Goldberg
TEKoppel
JKeehlisen
LChristen
EDreses-Werringloer
UConejero-Goldberg
CGordon
MLDavies
P Performance-based measures of everyday function in mild cognitive impairment.
Am J Psychiatry 2010;167
(7)
845- 853
PubMedGoogle ScholarCrossref