Association of Rare Copy Number Variants With Risk of Depression | Depressive Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Cooper  GM, Coe  BP, Girirajan  S,  et al.  A copy number variation morbidity map of developmental delay.  Nat Genet. 2011;43(9):838-846. doi:10.1038/ng.909PubMedGoogle ScholarCrossref
2.
Williams  NM, Franke  B, Mick  E,  et al.  Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3.  Am J Psychiatry. 2012;169(2):195-204. doi:10.1176/appi.ajp.2011.11060822PubMedGoogle ScholarCrossref
3.
Coe  BP, Witherspoon  K, Rosenfeld  JA,  et al.  Refining analyses of copy number variation identifies specific genes associated with developmental delay.  Nat Genet. 2014;46(10):1063-1071. doi:10.1038/ng.3092PubMedGoogle ScholarCrossref
4.
Girirajan  S, Brkanac  Z, Coe  BP,  et al.  Relative burden of large CNVs on a range of neurodevelopmental phenotypes.  PLoS Genet. 2011;7(11):e1002334. doi:10.1371/journal.pgen.1002334PubMedGoogle ScholarCrossref
5.
Rees  E, Walters  JT, Georgieva  L,  et al.  Analysis of copy number variations at 15 schizophrenia-associated loci.  Br J Psychiatry. 2014;204(2):108-114. doi:10.1192/bjp.bp.113.131052PubMedGoogle ScholarCrossref
6.
Rees  E, Kendall  K, Pardiñas  AF,  et al.  Analysis of intellectual disability copy number variants for association with schizophrenia.  JAMA Psychiatry. 2016;73(9):963-969. doi:10.1001/jamapsychiatry.2016.1831PubMedGoogle ScholarCrossref
7.
International Schizophrenia Consortium.  Rare chromosomal deletions and duplications increase risk of schizophrenia.  Nature. 2008;455(7210):237-241. doi:10.1038/nature07239PubMedGoogle ScholarCrossref
8.
Stefansson  H, Rujescu  D, Cichon  S,  et al; GROUP.  Large recurrent microdeletions associated with schizophrenia.  Nature. 2008;455(7210):232-236. doi:10.1038/nature07229PubMedGoogle ScholarCrossref
9.
Glessner  JT, Wang  K, Sleiman  PM,  et al.  Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder.  PLoS One. 2010;5(12):e15463. doi:10.1371/journal.pone.0015463PubMedGoogle ScholarCrossref
10.
Degenhardt  F, Priebe  L, Herms  S,  et al.  Association between copy number variants in 16p11.2 and major depressive disorder in a German case-control sample.  Am J Med Genet B Neuropsychiatr Genet. 2012;159B(3):263-273. doi:10.1002/ajmg.b.32034PubMedGoogle ScholarCrossref
11.
O’Dushlaine  C, Ripke  S, Ruderfer  DM,  et al.  Rare copy number variation in treatment-resistant major depressive disorder.  Biol Psychiatry. 2014;76(7):536-541. doi:10.1016/j.biopsych.2013.10.028PubMedGoogle ScholarCrossref
12.
Rucker  JJ, Breen  G, Pinto  D,  et al.  Genome-wide association analysis of copy number variation in recurrent depressive disorder.  Mol Psychiatry. 2013;18(2):183-189. doi:10.1038/mp.2011.144PubMedGoogle ScholarCrossref
13.
Rucker  JJ, Tansey  KE, Rivera  M,  et al.  Phenotypic association analyses with copy number variation in recurrent depressive disorder.  Biol Psychiatry. 2016;79(4):329-336. doi:10.1016/j.biopsych.2015.02.025PubMedGoogle ScholarCrossref
14.
Perlis  RH, Ruderfer  D, Hamilton  SP, Ernst  C.  Copy number variation in subjects with major depressive disorder who attempted suicide.  PLoS One. 2012;7(9):e46315. doi:10.1371/journal.pone.0046315PubMedGoogle ScholarCrossref
15.
Tansey  KE, Rucker  JJ, Kavanagh  DH,  et al.  Copy number variants and therapeutic response to antidepressant medication in major depressive disorder.  Pharmacogenomics J. 2014;14(4):395-399. doi:10.1038/tpj.2013.51PubMedGoogle ScholarCrossref
16.
Rees  E, Walters  JT, Chambert  KD,  et al; Wellcome Trust Case Control Consortium.  CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1.  Hum Mol Genet. 2014;23(6):1669-1676. doi:10.1093/hmg/ddt540PubMedGoogle ScholarCrossref
17.
Cross-Disorder Group of the Psychiatric Genomics Consortium.  Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis.  Lancet. 2013;381(9875):1371-1379. doi:10.1016/S0140-6736(12)62129-1PubMedGoogle ScholarCrossref
18.
Wray  NR, Ripke  S, Mattheisen  M,  et al; eQTLGen; 23andMe; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium.  Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.  Nat Genet. 2018;50(5):668-681. doi:10.1038/s41588-018-0090-3PubMedGoogle ScholarCrossref
19.
Cooper  SA, McLean  G, Guthrie  B,  et al.  Multiple physical and mental health comorbidity in adults with intellectual disabilities: population-based cross-sectional analysis.  BMC Fam Pract. 2015;16:110. doi:10.1186/s12875-015-0329-3PubMedGoogle ScholarCrossref
20.
Buckley  PF, Miller  BJ, Lehrer  DS, Castle  DJ.  Psychiatric comorbidities and schizophrenia.  Schizophr Bull. 2009;35(2):383-402. doi:10.1093/schbul/sbn135PubMedGoogle ScholarCrossref
21.
Smith  DJ, Nicholl  BI, Cullen  B,  et al.  Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participants.  PLoS One. 2013;8(11):e75362. doi:10.1371/journal.pone.0075362PubMedGoogle ScholarCrossref
22.
Howard  DM, Adams  MJ, Shirali  M,  et al; 23andMe Research Team.  Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways.  Nat Commun. 2018;9(1):1470. doi:10.1038/s41467-018-03819-3PubMedGoogle ScholarCrossref
23.
Spijker  J, de Graaf  R, Bijl  RV, Beekman  AT, Ormel  J, Nolen  WA.  Duration of major depressive episodes in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS).  Br J Psychiatry. 2002;181(3):208-213. doi:10.1192/bjp.181.3.208PubMedGoogle ScholarCrossref
24.
Murphy  S. Genotyping of 500,000 UK Biobank participants. Description of sample workflow and preparation of DNA for genotyping. https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_sample_workflow.pdf. Published April 27, 2015. Accessed July 7, 2017.
25.
Wang  K, Li  M, Hadley  D,  et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.  Genome Res. 2007;17(11):1665-1674. doi:10.1101/gr.6861907PubMedGoogle ScholarCrossref
26.
Kendall  KM, Rees  E, Escott-Price  V,  et al.  Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects.  Biol Psychiatry. 2017;82(2):103-110. doi:10.1016/j.biopsych.2016.08.014PubMedGoogle ScholarCrossref
27.
Crawford  K, Bracher-Smith  M, Owen  D,  et al.  Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank.  J Med Genet. 2019;56(3):131-138. doi:10.1136/jmedgenet-2018-105477PubMedGoogle ScholarCrossref
28.
Purcell  S, Neale  B, Todd-Brown  K,  et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses.  Am J Hum Genet. 2007;81(3):559-575. doi:10.1086/519795PubMedGoogle ScholarCrossref
29.
Maechler  M, Rousseeuw  P, Croux  C,  et al. robustbase: basic Robust Statistics R package version 0.93-2. R Package. http://cran.r-project.org/package=robustbase. Accessed December 12, 2018.
30.
Hubert  M, Rousseeuw  PJ, Verdonck  T.  A deterministic algorithm for robust location and scatter.  J Comput Graph Stat. 2012;21(3):618-637. doi:10.1080/10618600.2012.672100Google ScholarCrossref
31.
Lorant  V, Deliège  D, Eaton  W, Robert  A, Philippot  P, Ansseau  M.  Socioeconomic inequalities in depression: a meta-analysis.  Am J Epidemiol. 2003;157(2):98-112. https://www.ncbi.nlm.nih.gov/pubmed/12522017. doi:10.1093/aje/kwf182PubMedGoogle ScholarCrossref
32.
Egede  LE.  Major depression in individuals with chronic medical disorders: prevalence, correlates and association with health resource utilization, lost productivity and functional disability.  Gen Hosp Psychiatry. 2007;29(5):409-416. doi:10.1016/j.genhosppsych.2007.06.002PubMedGoogle ScholarCrossref
33.
Fluharty  M, Taylor  AE, Grabski  M, Munafò  MR.  The association of cigarette smoking with depression and anxiety: a systematic review.  Nicotine Tob Res. 2017;19(1):3-13. doi:10.1093/ntr/ntw140PubMedGoogle ScholarCrossref
34.
Boden  JM, Fergusson  DM.  Alcohol and depression.  Addiction. 2011;106(5):906-914. doi:10.1111/j.1360-0443.2010.03351.xPubMedGoogle ScholarCrossref
35.
Davies  G, Marioni  RE, Liewald  DC,  et al.  Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151).  Mol Psychiatry. 2016;21(6):758-767. doi:10.1038/mp.2016.45PubMedGoogle ScholarCrossref
36.
Rosseel  Y.  lavaan: an R package for structural equation modeling.  J Stat Softw. 2012;48(2):1-36. doi:10.18637/jss.v048.i02Google ScholarCrossref
37.
Han  J, Walters  JT, Kirov  G,  et al.  Gender differences in CNV burden do not confound schizophrenia CNV associations.  Sci Rep. 2016;6:25986. doi:10.1038/srep25986PubMedGoogle ScholarCrossref
38.
Martin  J, Tammimies  K, Karlsson  R,  et al.  Copy number variation and neuropsychiatric problems in females and males in the general population. [published online October 11.  Am J Med Genet B Neuropsychiatr Genet. 2018. doi:10.1002/ajmg.b.32685Google Scholar
39.
Davis  KAS, Coleman  JRI, Adams  M,  et al.  Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants.  BJPsych Open. 2018;4(3):83-90. doi:10.1192/bjo.2018.12PubMedGoogle ScholarCrossref
40.
Althubaiti  A.  Information bias in health research: definition, pitfalls, and adjustment methods.  J Multidiscip Healthc. 2016;9:211-217. doi:10.2147/JMDH.S104807PubMedGoogle ScholarCrossref
41.
Maier  W, Gänsicke  M, Gater  R, Rezaki  M, Tiemens  B, Urzúa  RF.  Gender differences in the prevalence of depression: a survey in primary care.  J Affect Disord. 1999;53(3):241-252. doi:10.1016/S0165-0327(98)00131-1PubMedGoogle ScholarCrossref
42.
Kirov  G, Rees  E, Walters  JT,  et al.  The penetrance of copy number variations for schizophrenia and developmental delay.  Biol Psychiatry. 2014;75(5):378-385. doi:10.1016/j.biopsych.2013.07.022PubMedGoogle ScholarCrossref
43.
Stefansson  H, Meyer-Lindenberg  A, Steinberg  S,  et al.  CNVs conferring risk of autism or schizophrenia affect cognition in controls.  Nature. 2014;505(7483):361-366. doi:10.1038/nature12818PubMedGoogle ScholarCrossref
Original Investigation
April 17, 2019

Association of Rare Copy Number Variants With Risk of Depression

Author Affiliations
  • 1MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
  • 2Centre for Academic Mental Health, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
JAMA Psychiatry. 2019;76(8):818-825. doi:10.1001/jamapsychiatry.2019.0566
Key Points

Question  Are rare copy number variants associated with depression in a large population sample?

Findings  In this case-control study of 407 074 individuals in the UK Biobank study, neurodevelopmental disorder copy number variants appear to be associated with the risk of depression in those without neurodevelopmental disorders. Physical health, educational attainment, social deprivation, smoking status, and alcohol consumption are variables that partially explain this association, and no evidence was found of an association between measures of copy number variant burden and depression.

Meaning  Neurodevelopmental copy number variants appear to be associated with increases in the risk of depression in those without neurodevelopmental disorders.

Abstract

Importance  The role of large, rare copy number variants (CNVs) in neuropsychiatric disorders is well established, but their association with common psychiatric disorders, such as depression, remains unclear.

Objective  To examine the association of a group of 53 CNVs associated with neurodevelopmental disorders and burden of rare CNVs with risk of depression.

Design, Setting, and Participants  This case-control study used data from the UK Biobank study sample, which comprised 502 534 individuals living in the United Kingdom. Individuals with autism spectrum disorder, intellectual disability, attention-deficit/hyperactivity disorder, schizophrenia, or bipolar affective disorder diagnoses were excluded. Analyses were further restricted to individuals of European genetic ancestry (n = 407 074). The study was conducted from January 2017 to September 2018.

Exposures  CNV carrier status.

Main Outcomes and Measures  For the primary outcome, individuals who reported that a physician had told them they had a depression diagnosis were defined as cases. Analyses were repeated using 2 alternative depression definitions: self-reported lifetime depression with current antidepressant prescription at the time of visit 1, and hospital discharge diagnosis of depression.

Results  Copy number variants were identified in 488 366 individuals aged 37 to 73 years. In total, 407 074 individuals with European genetic ancestry (220 201 female [54.1%]; mean [SD] age of 56.9 [8.0] years) were included in the study. Of these individuals, 23 979 (5.9%) had self-reported lifetime depression and 383 095 (94.1%) reported no lifetime depression. The group of 53 neurodevelopmental CNVs was associated with self-reported depression (odds ratio [OR], 1.34; 95% CI, 1.19-1.49, uncorrected P = 1.38 × 10−7), and these results were consistent when using 2 alternative definitions of depression. This association was partially explained by physical health, educational attainment, social deprivation, smoking status, and alcohol consumption. A strong independent association remained between the neurodevelopmental CNVs and depression in analyses that incorporated these other measures (OR, 1.26; 95% CI, 1.11-1.43; P = 2.87 × 10−4). Eight individual CNVs were nominally associated with risk of depression, and 3 of these 8 CNVs (1q21.1 duplication, Prader-Willi syndrome duplication, and 16p11.2 duplication) survived Bonferroni correction for the 53 CNVs tested. After the exclusion of carriers of neurodevelopmental CNVs, no association was found between measures of CNV burden and depression.

Conclusions and Relevance  Neurodevelopmental CNVs appear to be associated with depression, extending the spectrum of clinical phenotypes that are associated with CNV carrier status.

×