Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort | Autism Spectrum Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Lauritsen  MB.  Autism spectrum disorders.  Eur Child Adolesc Psychiatry. 2013;22(suppl 1):S37-S42. doi:10.1007/s00787-012-0359-5PubMedGoogle ScholarCrossref
2.
American Psychiatric Association.  Autism Spectrum Disorder. 5th ed. Washington, DC: Diagnostic and Statistical Manual of Mental Disorders; 2013.
3.
Kong  A, Thorleifsson  G, Frigge  ML,  et al.  The nature of nurture: Effects of parental genotypes.  Science. 2018;359(6374):424-428. doi:10.1126/science.aan6877PubMedGoogle ScholarCrossref
4.
Yip  BHK, Bai  D, Mahjani  B,  et al.  Heritable Variation, With Little or No Maternal Effect, Accounts for Recurrence Risk to Autism Spectrum Disorder in Sweden.  Biol Psychiatry. 201883(7):589-597. doi:10.1016/j.biopsych.2017.09.007PubMedGoogle ScholarCrossref
5.
Svensson  AC, Sandin  S, Cnattingius  S,  et al.  Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families.  Am J Epidemiol. 2009;170(11):1365-1372. doi:10.1093/aje/kwp328PubMedGoogle ScholarCrossref
6.
Devlin  B, Daniels  M, Roeder  K.  The heritability of IQ.  Nature. 1997;388(6641):468-471. doi:10.1038/41319PubMedGoogle ScholarCrossref
7.
Wang  Y, Tang  S, Xu  S, Weng  S, Liu  Z.  Maternal Body Mass Index and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis.  Sci Rep. 2016;6:34248. doi:10.1038/srep34248PubMedGoogle ScholarCrossref
8.
Tick  B, Bolton  P, Happé  F, Rutter  M, Rijsdijk  F.  Heritability of autism spectrum disorders: a meta-analysis of twin studies.  J Child Psychol Psychiatry. 2016;57(5):585-595. doi:10.1111/jcpp.12499PubMedGoogle ScholarCrossref
9.
Sandin  S, Lichtenstein  P, Kuja-Halkola  R, Hultman  C, Larsson  H, Reichenberg  A.  The heritability of autism spectrum disorder.  JAMA. 2017;318(12):1182-1184. doi:10.1001/jama.2017.12141PubMedGoogle ScholarCrossref
10.
Pettersson  E, Lichtenstein  P, Larsson  H,  et al; Attention Deficit/Hyperactivity Disorder Working Group of the iPSYCH-Broad-PGC Consortium, Autism Spectrum Disorder Working Group of the iPSYCH-Broad-PGC Consortium, Bipolar Disorder Working Group of the PGC, Eating Disorder Working Group of the PGC, Major Depressive Disorder Working Group of the PGC, Obsessive Compulsive Disorders and Tourette Syndrome Working Group of the PGC, Schizophrenia CLOZUK, Substance Use Disorder Working Group of the PGC.  Genetic influences on eight psychiatric disorders based on family data of 4 408 646 full and half-siblings, and genetic data of 333 748 cases and controls.  Psychol Med. 2019;49(7):1166-1173. doi:10.1017/S0033291718002039PubMedGoogle ScholarCrossref
11.
Hallmayer  J, Cleveland  S, Torres  A,  et al.  Genetic heritability and shared environmental factors among twin pairs with autism.  Arch Gen Psychiatry. 2011;68(11):1095-1102. doi:10.1001/archgenpsychiatry.2011.76PubMedGoogle ScholarCrossref
12.
Le Couteur  A, Bailey  A, Goode  S,  et al.  A broader phenotype of autism: the clinical spectrum in twins.  J Child Psychol Psychiatry. 1996;37(7):785-801. doi:10.1111/j.1469-7610.1996.tb01475.xPubMedGoogle ScholarCrossref
13.
Levine  SZ, Levav  I, Goldberg  Y, Pugachova  I, Becher  Y, Yoffe  R.  Exposure to genocide and the risk of schizophrenia: a population-based study.  Psychol Med. 2016;46(4):855-863. doi:10.1017/S0033291715002354PubMedGoogle ScholarCrossref
14.
Schendel  DE, Bresnahan  M, Carter  KW,  et al.  The International Collaboration for Autism Registry Epidemiology (iCARE): multinational registry-based investigations of autism risk factors and trends.  J Autism Dev Disord. 2013;43(11):2650-2663. doi:10.1007/s10803-013-1815-xPubMedGoogle ScholarCrossref
15.
Sandin  S, Schendel  D, Magnusson  P,  et al.  Autism risk associated with parental age and with increasing difference in age between the parents.  Mol Psychiatry. 2016;21(5):693-700. doi:10.1038/mp.2015.70PubMedGoogle ScholarCrossref
16.
Langhoff-Roos  J, Krebs  L, Klungsøyr  K,  et al.  The Nordic medical birth registers—a potential goldmine for clinical research.  Acta Obstet Gynecol Scand. 2014;93(2):132-137. doi:10.1111/aogs.12302PubMedGoogle ScholarCrossref
17.
McGuffin  P, Owen  MJ, Gottesman  II. Quantitative genetics. In: McGuffin  P, Owen  MJ, Gottesman  II, eds.  Psychiatric Genetics and Genomics. Oxford, England: Oxford University Press; 2004:44-48.
18.
Lindström  LS, Yip  B, Lichtenstein  P, Pawitan  Y, Czene  K.  Etiology of familial aggregation in melanoma and squamous cell carcinoma of the skin.  Cancer Epidemiol Biomarkers Prev. 2007;16(8):1639-1643. doi:10.1158/1055-9965.EPI-07-0047PubMedGoogle ScholarCrossref
19.
Yip  BH, Moger  TA, Pawitan  Y.  Genetic analysis of age-at-onset traits based on case-control family data.  Stat Med. 2010;29(30):3258-3266. doi:10.1002/sim.3907PubMedGoogle ScholarCrossref
20.
Pawitan  Y, Reilly  M, Nilsson  E, Cnattingius  S, Lichtenstein  P.  Estimation of genetic and environmental factors for binary traits using family data.  Stat Med. 2004;23(3):449-465. doi:10.1002/sim.1603PubMedGoogle ScholarCrossref
21.
Noh  M, Yip  B, Lee  Y, Pawitan  Y.  Multicomponent variance estimation for binary traits in family-based studies.  Genet Epidemiol. 2006;30(1):37-47. doi:10.1002/gepi.20099PubMedGoogle ScholarCrossref
22.
Lichtenstein  P, Yip  BH, Björk  C,  et al.  Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study.  Lancet. 2009;373(9659):234-239. doi:10.1016/S0140-6736(09)60072-6PubMedGoogle ScholarCrossref
23.
Pawitan  Y.  In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford, England: OUP Oxford; 2001.
24.
Carter  KW, Francis  RW, Carter  KW,  et al; International Collaboration for Autism Registry Epidemiology.  ViPAR: a software platform for the Virtual Pooling and Analysis of Research Data.  Int J Epidemiol. 2016;45(2):408-416. doi:10.1093/ije/dyv193PubMedGoogle ScholarCrossref
25.
R: A Language and Environment for Statistical Computing [computer program]. Vienna, Austria; 2015.
26.
Connolly  N, Anixt  J, Manning  P, Ping-I Lin  D, Marsolo  KA, Bowers  K.  Maternal metabolic risk factors for autism spectrum disorder-An analysis of electronic medical records and linked birth data.  Autism Res. 2016;9(8):829-837. doi:10.1002/aur.1586PubMedGoogle ScholarCrossref
27.
Gardner  RM, Lee  BK, Magnusson  C,  et al.  Maternal body mass index during early pregnancy, gestational weight gain, and risk of autism spectrum disorders: Results from a Swedish total population and discordant sibling study.  Int J Epidemiol. 2015;44(3):870-883. doi:10.1093/ije/dyv081PubMedGoogle ScholarCrossref
28.
Elks  CE, den Hoed  M, Zhao  JH,  et al.  Variability in the heritability of body mass index: a systematic review and meta-regression.  Front Endocrinol (Lausanne). 2012;3(29):29.PubMedGoogle Scholar
29.
Chheda  H, Palta  P, Pirinen  M,  et al.  Whole-genome view of the consequences of a population bottleneck using 2926 genome sequences from Finland and United Kingdom.  Eur J Hum Genet. 2017;25(4):477-484. doi:10.1038/ejhg.2016.205PubMedGoogle ScholarCrossref
30.
McEvoy  BP, Montgomery  GW, McRae  AF,  et al.  Geographical structure and differential natural selection among North European populations.  Genome Res. 2009;19(5):804-814. doi:10.1101/gr.083394.108PubMedGoogle ScholarCrossref
31.
Ioannidis  JPA.  Why most published research findings are false.  PLoS Med. 2005;2(8):e124. doi:10.1371/journal.pmed.0020124PubMedGoogle ScholarCrossref
32.
Moonesinghe  R, Khoury  MJ, Janssens  ACJW.  Most published research findings are false-but a little replication goes a long way.  PLoS Med. 2007;4(2):e28. doi:10.1371/journal.pmed.0040028PubMedGoogle ScholarCrossref
33.
Sandin  S, Lichtenstein  P, Kuja-Halkola  R, Larsson  H, Hultman  CM, Reichenberg  A.  The familial risk of autism.  JAMA. 2014;311(17):1770-1777. doi:10.1001/jama.2014.4144PubMedGoogle ScholarCrossref
34.
Gaugler  T, Klei  L, Sanders  SJ,  et al.  Most genetic risk for autism resides with common variation.  Nat Genet. 2014;46(8):881-885. doi:10.1038/ng.3039PubMedGoogle ScholarCrossref
35.
Krishna Kumar  S, Feldman  MW, Rehkopf  DH, Tuljapurkar  S.  Limitations of GCTA as a solution to the missing heritability problem.  Proc Natl Acad Sci U S A. 2016;113(1):E61-E70. doi:10.1073/pnas.1520109113PubMedGoogle ScholarCrossref
36.
Tenesa  A, Haley  CS.  The heritability of human disease: estimation, uses and abuses.  Nat Rev Genet. 2013;14(2):139-149. doi:10.1038/nrg3377PubMedGoogle ScholarCrossref
Original Investigation
July 17, 2019

Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort

Author Affiliations
  • 1Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR
  • 2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
  • 3Center for Health Communities, Environmental Health Investigations Branch, California Department of Public Health, Richmond
  • 4Department of Child Psychiatry, Turku University, Turku University Hospital, Turku, Finland
  • 5Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
  • 6Ministry of Health, Israel
  • 7Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
  • 8Seaver Autism Center for Research and Treatment at Mount Sinai, New York, New York
  • 9Information Services Department, National Institute for Health and Welfare, Helsinki, Finland
  • 10Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
  • 11Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
  • 12Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
  • 13Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
  • 14The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
  • 15Department of Public Health, Aarhus University, Aarhus, Denmark
  • 16Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
  • 17iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
  • 18Department of Community Mental Health, University of Haifa, Haifa, Israel
  • 19Meuhedet Health Services, Israel
  • 20Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
  • 21New York State Psychiatric Institute, New York
  • 22Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
JAMA Psychiatry. 2019;76(10):1035-1043. doi:10.1001/jamapsychiatry.2019.1411
Key Points

Question  What are the etiological origins of autism spectrum disorder?

Findings  In a large population-based multinational cohort study including more than 2 million individuals, 22 156 of whom were diagnosed with ASD, the heritability of autism spectrum disorder was estimated to be approximately 80%, with possible modest differences in the sources of autism spectrum disorder risk replicated across countries.

Meaning  The variation in the occurrence of autism spectrum disorder in the population is mostly owing to inherited genetic influences, with no support for contribution from maternal effects.

Abstract

Importance  The origins and development of autism spectrum disorder (ASD) remain unresolved. No individual-level study has provided estimates of additive genetic, maternal, and environmental effects in ASD across several countries.

Objective  To estimate the additive genetic, maternal, and environmental effects in ASD.

Design, Setting, and Participants  Population-based, multinational cohort study including full birth cohorts of children from Denmark, Finland, Sweden, Israel, and Western Australia born between January 1, 1998, and December 31, 2011, and followed up to age 16 years. Data were analyzed from September 23, 2016 through February 4, 2018.

Main Outcomes and Measures  Across 5 countries, models were fitted to estimate variance components describing the total variance in risk for ASD occurrence owing to additive genetics, maternal, and shared and nonshared environmental effects.

Results  The analytic sample included 2 001 631 individuals, of whom 1 027 546 (51.3%) were male. Among the entire sample, 22 156 were diagnosed with ASD. The median (95% CI) ASD heritability was 80.8% (73.2%-85.5%) for country-specific point estimates, ranging from 50.9% (25.1%-75.6%) (Finland) to 86.8% (69.8%-100.0%) (Israel). For the Nordic countries combined, heritability estimates ranged from 81.2% (73.9%-85.3%) to 82.7% (79.1%-86.0%). Maternal effect was estimated to range from 0.4% to 1.6%. Estimates of genetic, maternal, and environmental effects for autistic disorder were similar with ASD.

Conclusions and Relevance  Based on population data from 5 countries, the heritability of ASD was estimated to be approximately 80%, indicating that the variation in ASD occurrence in the population is mostly owing to inherited genetic influences, with no support for contribution from maternal effects. The results suggest possible modest differences in the sources of ASD risk between countries.

×