[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.191.72. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Gernand  AD, Schulze  KJ, Stewart  CP, West  KP  Jr, Christian  P.  Micronutrient deficiencies in pregnancy worldwide: health effects and prevention.  Nat Rev Endocrinol. 2016;12(5):274-289. doi:10.1038/nrendo.2016.37PubMedGoogle ScholarCrossref
2.
Milman  N.  Iron in pregnancy: how do we secure an appropriate iron status in the mother and child?  Ann Nutr Metab. 2011;59(1):50-54. doi:10.1159/000332129PubMedGoogle ScholarCrossref
3.
Tchernia  G, Archambeaud  MP, Yvart  J, Diallo  D.  Erythrocyte ferritin in human neonates: maternofetal iron kinetics revisited.  Clin Lab Haematol. 1996;18(3):147-153. doi:10.1046/j.1365-2257.1996.00170.xPubMedGoogle ScholarCrossref
4.
Georgieff  MK.  Long-term brain and behavioral consequences of early iron deficiency.  Nutr Rev. 2011;69(s1)(suppl 1):S43-S48. doi:10.1111/j.1753-4887.2011.00432.xPubMedGoogle ScholarCrossref
5.
Schmidt  RJ, Tancredi  DJ, Krakowiak  P, Hansen  RL, Ozonoff  S.  Maternal intake of supplemental iron and risk of autism spectrum disorder.  Am J Epidemiol. 2014;180(9):890-900. doi:10.1093/aje/kwu208PubMedGoogle ScholarCrossref
6.
DeVilbiss  EA, Magnusson  C, Gardner  RM,  et al.  Antenatal nutritional supplementation and autism spectrum disorders in the Stockholm youth cohort: population based cohort study.  BMJ. 2017;359:j4273. doi:10.1136/bmj.j4273PubMedGoogle ScholarCrossref
7.
Antshel  KM, Zhang-James  Y, Faraone  SV.  The comorbidity of ADHD and autism spectrum disorder.  Expert Rev Neurother. 2013;13(10):1117-1128. doi:10.1586/14737175.2013.840417PubMedGoogle ScholarCrossref
8.
Matson  JL, Shoemaker  M.  Intellectual disability and its relationship to autism spectrum disorders.  Res Dev Disabil. 2009;30(6):1107-1114. doi:10.1016/j.ridd.2009.06.003PubMedGoogle ScholarCrossref
9.
Lyall  K, Croen  L, Daniels  J,  et al.  The changing epidemiology of autism spectrum disorders.  Annu Rev Public Health. 2017;38(1):81-102. doi:10.1146/annurev-publhealth-031816-044318PubMedGoogle ScholarCrossref
10.
Sciberras  E, Mulraney  M, Silva  D, Coghill  D.  Prenatal risk factors and the etiology of ADHD: review of existing evidence.  Curr Psychiatry Rep. 2017;19(1):1. doi:10.1007/s11920-017-0753-2PubMedGoogle ScholarCrossref
11.
Heikura  U, Taanila  A, Hartikainen  A-L,  et al.  Variations in prenatal sociodemographic factors associated with intellectual disability: a study of the 20-year interval between two birth cohorts in northern Finland.  Am J Epidemiol. 2008;167(2):169-177. doi:10.1093/aje/kwm291PubMedGoogle ScholarCrossref
12.
Idring  S, Lundberg  M, Sturm  H,  et al.  Changes in prevalence of autism spectrum disorders in 2001-2011: findings from the Stockholm youth cohort.  J Autism Dev Disord. 2015;45(6):1766-1773. doi:10.1007/s10803-014-2336-yPubMedGoogle ScholarCrossref
13.
Gardner  RM, Dalman  C, Rai  D, Lee  BK, Karlsson  H.  The association of paternal IQ with autism spectrum disorders and its comorbidities: a population-based cohort study  [published online April 23, 2019].  J Am Acad Child Adolesc Psychiatry. 2019;S0890-8567(19)30271-0. doi:10.1016/j.jaac.2019.04.004PubMedGoogle Scholar
14.
Kosidou  K, Dalman  C, Widman  L,  et al.  Maternal polycystic ovary syndrome and risk for attention-deficit/hyperactivity disorder in the offspring.  Biol Psychiatry. 2017;82(9):651-659. doi:10.1016/j.biopsych.2016.09.022PubMedGoogle ScholarCrossref
15.
Idring  S, Rai  D, Dal  H,  et al.  Autism spectrum disorders in the Stockholm Youth Cohort: design, prevalence and validity.  PLoS One. 2012;7(7):e41280. doi:10.1371/journal.pone.0041280PubMedGoogle Scholar
16.
Skoglund  C, Chen  Q, Franck  J, Lichtenstein  P, Larsson  H.  Attention-deficit/hyperactivity disorder and risk for substance use disorders in relatives.  Biol Psychiatry. 2015;77(10):880-886. doi:10.1016/j.biopsych.2014.10.006PubMedGoogle ScholarCrossref
17.
Rai  D, Lewis  G, Lundberg  M,  et al.  Parental socioeconomic status and risk of offspring autism spectrum disorders in a Swedish population-based study.  J Am Acad Child Adolesc Psychiatry. 2012;51(5):467-476.e6. doi:10.1016/j.jaac.2012.02.012PubMedGoogle ScholarCrossref
18.
Gardner  RM, Lee  BK, Magnusson  C,  et al.  Maternal body mass index during early pregnancy, gestational weight gain, and risk of autism spectrum disorders: results from a Swedish total population and discordant sibling study.  Int J Epidemiol. 2015;44(3):870-883. doi:10.1093/ije/dyv081PubMedGoogle ScholarCrossref
19.
Lee  BK, Magnusson  C, Gardner  RM,  et al.  Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders.  Brain Behav Immun. 2015;44:100-105. doi:10.1016/j.bbi.2014.09.001PubMedGoogle ScholarCrossref
20.
Stevens  GA, Finucane  MM, De-Regil  LM,  et al; Nutrition Impact Model Study Group (Anaemia).  Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data.  Lancet Glob Health. 2013;1(1):e16-e25. doi:10.1016/S2214-109X(13)70001-9PubMedGoogle ScholarCrossref
21.
Haider  BA, Olofin  I, Wang  M, Spiegelman  D, Ezzati  M, Fawzi  WW; Nutrition Impact Model Study Group (anaemia).  Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis.  BMJ. 2013;346:f3443. doi:10.1136/bmj.f3443PubMedGoogle ScholarCrossref
22.
Emsley  R, Liu  H. PARAMED: Stata module to perform causal mediation analysis using parametric regression models. April 2013. https://econpapers.repec.org/software/bocbocode/s457581.htm. Accessed May 27, 2018.
23.
VanderWeele  TJ.  Mediation analysis: a practitioner’s guide.  Annu Rev Public Health. 2016;37(1):17-32. doi:10.1146/annurev-publhealth-032315-021402PubMedGoogle ScholarCrossref
24.
Leonard  H, de Klerk  N, Bourke  J, Bower  C.  Maternal health in pregnancy and intellectual disability in the offspring: a population-based study.  Ann Epidemiol. 2006;16(6):448-454. doi:10.1016/j.annepidem.2005.05.002PubMedGoogle ScholarCrossref
25.
Drassinower  D, Lavery  JA, Friedman  AM, Levin  HI, Običan  SG, Ananth  CV.  The effect of maternal haematocrit on offspring IQ at 4 and 7 years of age: a secondary analysis.  BJOG. 2016;123(13):2087-2093. doi:10.1111/1471-0528.14263PubMedGoogle ScholarCrossref
26.
Gardener  H, Spiegelman  D, Buka  SL.  Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis.  Pediatrics. 2011;128(2):344-355. doi:10.1542/peds.2010-1036PubMedGoogle ScholarCrossref
27.
Peña-Rosas  JP, De-Regil  LM, Garcia-Casal  MN, Dowswell  T.  Daily oral iron supplementation during pregnancy.  Cochrane Database Syst Rev. 2015;(7):CD004736. doi:10.1002/14651858.CD004736.pub5PubMedGoogle Scholar
28.
Institute of Medicine; Food and Nutrition Board.  Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academies Press; 2001.
29.
World Health Organization. Iron and folate supplementation. 2006. https://www.who.int/reproductivehealth/publications/maternal_perinatal_health/iron_folate_supplementation.pdf. Accessed June 22, 2018.
30.
Institute of Medicine; Food and Nutrition Board.  Iron Deficiency Anemia: Recommended Guidelines for the Prevention, Detection, and Management Among U.S. Children and Women of Childbearing Age. Washington, DC: National Academies Press; 1993.
31.
Chang  S, Zeng  L, Brouwer  ID, Kok  FJ, Yan  H.  Effect of iron deficiency anemia in pregnancy on child mental development in rural China.  Pediatrics. 2013;131(3):e755-e763. doi:10.1542/peds.2011-3513PubMedGoogle ScholarCrossref
32.
Widdowson  EM, Spray  CM.  Chemical development in utero.  Arch Dis Child. 1951;26(127):205-214. doi:10.1136/adc.26.127.205PubMedGoogle ScholarCrossref
33.
Biederman  J, Faraone  SV.  Attention-deficit hyperactivity disorder.  Lancet. 2005;366(9481):237-248. doi:10.1016/S0140-6736(05)66915-2PubMedGoogle ScholarCrossref
34.
Hettinger  JA, Liu  X, Schwartz  CE, Michaelis  RC, Holden  JJAA.  A DRD1 haplotype is associated with risk for autism spectrum disorders in male-only affected sib-pair families.  Am J Med Genet B Neuropsychiatr Genet. 2008;147B(5):628-636. doi:10.1002/ajmg.b.30655PubMedGoogle ScholarCrossref
35.
Lawlor  DA, Tilling  K, Davey Smith  G.  Triangulation in aetiological epidemiology.  Int J Epidemiol. 2016;45(6):1866-1886. doi:10.1093/ije/dyw314PubMedGoogle Scholar
36.
Frisell  T, Öberg  S, Kuja-Halkola  R, Sjölander  A.  Sibling comparison designs: bias from non-shared confounders and measurement error.  Epidemiology. 2012;23(5):713-720. doi:10.1097/EDE.0b013e31825fa230PubMedGoogle ScholarCrossref
37.
Wang  DD, Leung  CW, Li  Y,  et al.  Trends in dietary quality among adults in the United States, 1999 through 2010.  JAMA Intern Med. 2014;174(10):1587-1595. doi:10.1001/jamainternmed.2014.3422PubMedGoogle ScholarCrossref
38.
Ganz  T.  Iron and infection.  Int J Hematol. 2018;107(1):7-15. doi:10.1007/s12185-017-2366-2PubMedGoogle ScholarCrossref
39.
Bale  JF  Jr, Murph  JR.  Congenital infections and the nervous system.  Pediatr Clin North Am. 1992;39(4):669-690. doi:10.1016/S0031-3955(16)38370-5PubMedGoogle ScholarCrossref
40.
Di Renzo  GC, Spano  F, Giardina  I, Brillo  E, Clerici  G, Roura  LC.  Iron deficiency anemia in pregnancy.  Womens Health (Lond). 2015;11(6):891-900. doi:10.2217/whe.15.35PubMedGoogle ScholarCrossref
41.
Al  RA, Unlubilgin  E, Kandemir  O, Yalvac  S, Cakir  L, Haberal  A.  Intravenous versus oral iron for treatment of anemia in pregnancy: a randomized trial.  Obstet Gynecol. 2005;106(6):1335-1340. doi:10.1097/01.AOG.0000185260.82466.b4PubMedGoogle ScholarCrossref
42.
Allen  LH.  Anemia and iron deficiency: effects on pregnancy outcome.  Am J Clin Nutr. 2000;71(5)(suppl):1280S-1284S. doi:10.1093/ajcn/71.5.1280sPubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 15,114
    Citations 0
    Original Investigation
    September 18, 2019

    Association of Prenatal Maternal Anemia With Neurodevelopmental Disorders

    Author Affiliations
    • 1Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
    • 2Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
    • 3Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania
    • 4A. J. Drexel Autism Institute, Philadelphia, Pennsylvania
    • 5Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    JAMA Psychiatry. Published online September 18, 2019. doi:https://doi.org/10.1001/jamapsychiatry.2019.2309
    Key Points

    Question  Is maternal anemia during pregnancy associated with risk of 3 commonly co-occurring neurodevelopmental disorders: autism spectrum disorder, attention-deficit/hyperactivity disorder, and intellectual disability?

    Findings  In this cohort study of 532 232 nonadoptive Swedish children and their 299 768 mothers, anemia diagnosed earlier in pregnancy (≤30 weeks) was significantly associated with increased offspring risk of autism spectrum disorder, attention-deficit/hyperactivity disorder, and intellectual disability. These associations were not apparent for anemia diagnosed later in pregnancy.

    Meaning  The findings suggest that maternal anemia occurring during early pregnancy is associated with increased risk for autism spectrum disorder, attention-deficit/hyperactivity disorder, and in particular, intellectual disability, emphasizing the importance of early screening for iron status and nutritional counseling in antenatal care.

    Abstract

    Importance  Given the critical role that iron plays in neurodevelopment, an association between prenatal iron deficiency and later risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and intellectual disability (ID), is plausible.

    Objective  To test the a priori hypothesis that anemia diagnosed in mothers during pregnancy is associated with an increased risk of ASD, ADHD, and ID in offspring and that the magnitude of the risk varies with regard to the timing of anemia in pregnancy.

    Design, Setting, and Participants  This cohort study used health and population register data from the Stockholm Youth Cohort to evaluate 532 232 nonadoptive children born from January 1, 1987, to December 31, 2010, in Sweden, with follow-up in health registers until December 31, 2016. Data analysis was performed from January 15, 2018, to June 20, 2018.

    Exposures  Registered diagnoses of anemia during pregnancy. Gestational timing of the first recorded anemia diagnosis (≤30 weeks or >30 weeks) was considered to assess potential critical windows of development.

    Main Outcomes and Measures  Registered diagnoses of ASD, ADHD, or ID or co-occurring combinations of these disorders.

    Results  The cohort included 532 232 individuals (272 884 [51.3%] male) between 6 and 29 years of age at the end of follow-up (mean [SD] age, 17.6 [7.1] years) and their 299 768 mothers. The prevalence of ASD, ADHD, and ID was higher among children born to mothers diagnosed with anemia within the first 30 weeks of pregnancy (4.9% ASD, 9.3% ADHD, and 3.1% ID) compared with mothers with anemia diagnosed later in pregnancy (3.8% ASD, 7.2% ADHD, and 1.1% ID) or mothers not diagnosed with anemia (3.5% ASD, 7.1% ADHD, and 1.3% ID). Anemia diagnosed during the first 30 weeks of pregnancy but not later was associated with increased risk of diagnosis of ASD (odds ratio [OR], 1.44; 95% CI, 1.13-1.84), ADHD (OR, 1.37; 95% CI, 1.14-1.64), and ID (OR, 2.20; 95% CI, 1.61-3.01) in offspring in models that included socioeconomic, maternal, and pregnancy-related factors. Early anemia diagnosis was similarly associated with risk of ASD (OR, 2.25; 95% CI, 1.24-4.11) and ID (OR, 2.59; 95% CI, 1.08-6.22) in a matched sibling comparison. Considering mutually exclusive diagnostic groups, we observed the strongest association between anemia and ID without co-occurring ASD (OR, 2.72; 95% CI, 1.84-4.01). Associations of these disorders with anemia diagnosed later in pregnancy were greatly diminished.

    Conclusions and Relevance  In contrast to maternal anemia diagnosed toward the end of pregnancy, anemia diagnosed earlier in pregnancy was associated with increased risk of the development of ASD, ADHD, and particularly ID in offspring. Given that iron deficiency and anemia are common among women of childbearing age, our findings emphasize the importance of early screening for iron status and nutritional counseling in antenatal care.

    ×