Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis | Psychiatry and Behavioral Health | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Sign In
Table 1.  Allele Frequencies of Variant CYP2C19 and CYP2D6 Genes Among Different Populations Worldwidea
Allele Frequencies of Variant CYP2C19 and CYP2D6 Genes Among Different Populations Worldwidea
Table 2.  Overview of Search Process and Studies Incorporated Into Meta-analyses
Overview of Search Process and Studies Incorporated Into Meta-analyses
Table 3.  Detailed Statistical Report of the Association of Metabolism Status With Antipsychotic and Antidepressant Exposure
Detailed Statistical Report of the Association of Metabolism Status With Antipsychotic and Antidepressant Exposure
1.
Hiemke  C, Bergemann  N, Clement  HW,  et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017.  Pharmacopsychiatry. 2018;51(1-02):9-62. doi:10.1055/s-0043-116492
2.
Furukawa  TA, Cipriani  A, Cowen  PJ, Leucht  S, Egger  M, Salanti  G.  Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis.   Lancet Psychiatry. 2019;6(7):601-609. doi:10.1016/S2215-0366(19)30217-2 PubMedGoogle ScholarCrossref
3.
Leucht  S, Crippa  A, Siafis  S, Patel  MX, Orsini  N, Davis  JM.  Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia.   Am J Psychiatry. 2020;177(4):342-353. doi:10.1176/appi.ajp.2019.19010034PubMedGoogle ScholarCrossref
4.
Jukić  MM, Haslemo  T, Molden  E, Ingelman-Sundberg  M.  Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients.   Am J Psychiatry. 2018;175(5):463-470. doi:10.1176/appi.ajp.2017.17050550 PubMedGoogle ScholarCrossref
5.
Jukic  MM, Smith  RL, Haslemo  T, Molden  E, Ingelman-Sundberg  M.  Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study.   Lancet Psychiatry. 2019;6(5):418-426. doi:10.1016/S2215-0366(19)30088-4 PubMedGoogle ScholarCrossref
6.
Bråten  LS, Haslemo  T, Jukic  MM, Ingelman-Sundberg  M, Molden  E, Kringen  MK.  Impact of CYP2C19 genotype on sertraline exposure in 1200 Scandinavian patients.   Neuropsychopharmacology. 2020;45(3):570-576. doi:10.1038/s41386-019-0554-xPubMedGoogle ScholarCrossref
7.
Gaedigk  A, Sangkuhl  K, Whirl-Carrillo  M, Klein  T, Leeder  JS.  Prediction of CYP2D6 phenotype from genotype across world populations.   Genet Med. 2017;19(1):69-76. doi:10.1038/gim.2016.80PubMedGoogle ScholarCrossref
8.
Fricke-Galindo  I, Céspedes-Garro  C, Rodrigues-Soares  F,  et al.  Interethnic variation of CYP2C19 alleles, “predicted” phenotypes and “measured” metabolic phenotypes across world populations.   Pharmacogenomics J. 2016;16(2):113-123. doi:10.1038/tpj.2015.70 PubMedGoogle ScholarCrossref
9.
Zhou  Y, Ingelman-Sundberg  M, Lauschke  VM.  Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects.   Clin Pharmacol Ther. 2017;102(4):688-700. doi:10.1002/cpt.690 PubMedGoogle ScholarCrossref
10.
Fabbri  C, Tansey  KE, Perlis  RH,  et al.  Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies.   Eur Neuropsychopharmacol. 2018;28(8):945-954. doi:10.1016/j.euroneuro.2018.05.009PubMedGoogle ScholarCrossref
11.
de Leon  J, Susce  MT, Pan  RM, Fairchild  M, Koch  WH, Wedlund  PJ.  The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation.   J Clin Psychiatry. 2005;66(1):15-27. doi:10.4088/JCP.v66n0103 PubMedGoogle ScholarCrossref
12.
Jukić  MM, Opel  N, Ström  J,  et al.  Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment.   Mol Psychiatry. 2017;22(8):1155-1163. doi:10.1038/mp.2016.204 PubMedGoogle ScholarCrossref
13.
Rahikainen  AL, Vauhkonen  P, Pett  H,  et al.  Completed suicides of citalopram users-the role of CYP genotypes and adverse drug interactions.   Int J Legal Med. 2019;133(2):353-363. doi:10.1007/s00414-018-1927-0 PubMedGoogle ScholarCrossref
14.
Ingelman-Sundberg  M.  Translation of pharmacogenomic drug labels into the clinic: current problems.   Pharmacol Res. 2020;153:104620. doi:10.1016/j.phrs.2019.104620 PubMedGoogle Scholar
15.
Cipriani  A, Furukawa  TA, Salanti  G,  et al.  Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis.   Lancet. 2018;391(10128):1357-1366. doi:10.1016/S0140-6736(17)32802-7 PubMedGoogle ScholarCrossref
16.
Leucht  S, Cipriani  A, Spineli  L,  et al.  Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis.   Lancet. 2013;382(9896):951-962. doi:10.1016/S0140-6736(13)60733-3 PubMedGoogle ScholarCrossref
17.
Sterne  JA, Hernán  MA, Reeves  BC,  et al.  ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.   BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919 PubMedGoogle ScholarCrossref
18.
Caudle  KE, Sangkuhl  K, Whirl-Carrillo  M,  et al.  Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group.   Clin Transl Sci. 2020;13(1):116-124. doi:10.1111/cts.12692 PubMedGoogle ScholarCrossref
19.
Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting: Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008 PubMedGoogle ScholarCrossref
20.
Friedrich  JO, Adhikari  NKJ, Beyene  J.  The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study.   BMC Med Res Methodol. 2008;8(1):32. doi:10.1186/1471-2288-8-32PubMedGoogle ScholarCrossref
21.
Higgins  JPT TJ, Chandler  J, Cumpston  M, Li  T, Page  MJ, Welch  VA.  Cochrane Handbook for Systematic Reviews of Interventions, version 6.1 (updated September 2020). Cochrane; 2020.
22.
Sterne  JA, Sutton  AJ, Ioannidis  JP,  et al.  Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials.   BMJ. 2011;343:d4002. doi:10.1136/bmj.d4002 PubMedGoogle ScholarCrossref
23.
US Food and Drug Administration. Guidance for Industry  Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations. Center for Drug Evaluation and Research; 2003.
24.
Lisbeth  P, Vincent  H, Kristof  M, Bernard  S, Manuel  M, Hugo  N.  Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol.   Eur J Clin Pharmacol. 2016;72(2):175-184. doi:10.1007/s00228-015-1965-1 PubMedGoogle ScholarCrossref
25.
Belmonte  C, Ochoa  D, Román  M,  et al.  Influence of CYP2D6, CYP3A4, CYP3A5 and ABCB1 polymorphisms on pharmacokinetics and safety of aripiprazole in healthy volunteers.   Basic Clin Pharmacol Toxicol. 2018;122(6):596-605. doi:10.1111/bcpt.12960 PubMedGoogle ScholarCrossref
26.
van der Weide  K, van der Weide  J.  The influence of the CYP3A4*22 polymorphism and CYP2D6 polymorphisms on serum concentrations of aripiprazole, haloperidol, pimozide, and risperidone in psychiatric patients.   J Clin Psychopharmacol. 2015;35(3):228-236. doi:10.1097/JCP.0000000000000319 PubMedGoogle ScholarCrossref
27.
Tveito  M, Molden  E, Høiseth  G, Correll  CU, Smith  RL.  Impact of age and CYP2D6 genetics on exposure of aripiprazole and dehydroaripiprazole in patients using long-acting injectable versus oral formulation: relevance of poor and intermediate metabolizer status.   Eur J Clin Pharmacol. 2020;76(1):41-49. doi:10.1007/s00228-019-02768-0 PubMedGoogle ScholarCrossref
28.
Suzuki  T, Mihara  K, Nakamura  A,  et al.  Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia.   Ther Drug Monit. 2011;33(1):21-24. doi:10.1097/FTD.0b013e3182031021 PubMedGoogle ScholarCrossref
29.
Suzuki  T, Mihara  K, Nakamura  A,  et al.  Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia.   Ther Drug Monit. 2014;36(5):651-655. doi:10.1097/FTD.0000000000000070 PubMedGoogle ScholarCrossref
30.
Nagai  G, Mihara  K, Nakamura  A,  et al.  Prolactin concentrations during aripiprazole treatment in relation to sex, plasma drugs concentrations and genetic polymorphisms of dopamine D2 receptor and cytochrome P450 2D6 in Japanese patients with schizophrenia.   Psychiatry Clin Neurosci. 2012;66(6):518-524. doi:10.1111/j.1440-1819.2012.02391.x PubMedGoogle ScholarCrossref
31.
Azuma  J, Hasunuma  T, Kubo  M,  et al.  The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine.   Eur J Clin Pharmacol. 2012;68(1):29-37. doi:10.1007/s00228-011-1094-4 PubMedGoogle ScholarCrossref
32.
Kubo  M, Koue  T, Inaba  A,  et al.  Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole.   Drug Metab Pharmacokinet. 2005;20(1):55-64. doi:10.2133/dmpk.20.55 PubMedGoogle ScholarCrossref
33.
Kubo  M, Koue  T, Maune  H, Fukuda  T, Azuma  J.  Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism.   Drug Metab Pharmacokinet. 2007;22(5):358-366. doi:10.2133/dmpk.22.358 PubMedGoogle ScholarCrossref
34.
Desai  M, Tanus-Santos  JE, Li  L,  et al.  Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6.   Pharmacogenomics J. 2003;3(2):105-113. doi:10.1038/sj.tpj.6500160 PubMedGoogle ScholarCrossref
35.
Gassó  P, Papagianni  K, Mas  S,  et al.  Relationship between CYP2D6 genotype and haloperidol pharmacokinetics and extrapyramidal symptoms in healthy volunteers.   Pharmacogenomics. 2013;14(13):1551-1563. doi:10.2217/pgs.13.150 PubMedGoogle ScholarCrossref
36.
Brockmöller  J, Kirchheiner  J, Schmider  J,  et al.  The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment.   Clin Pharmacol Ther. 2002;72(4):438-452. doi:10.1067/mcp.2002.127494 PubMedGoogle ScholarCrossref
37.
Troost  PW, Lahuis  BE, Hermans  MH,  et al.  Prolactin release in children treated with risperidone: impact and role of CYP2D6 metabolism.   J Clin Psychopharmacol. 2007;27(1):52-57. doi:10.1097/JCP.0b013e31802e68d5 PubMedGoogle ScholarCrossref
38.
Jovanović  N, Božina  N, Lovrić  M, Medved  V, Jakovljević  M, Peleš  AM.  The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone.   Eur J Clin Pharmacol. 2010;66(11):1109-1117. doi:10.1007/s00228-010-0850-1 PubMedGoogle ScholarCrossref
39.
Hendset  M, Molden  E, Refsum  H, Hermann  M.  Impact of CYP2D6 genotype on steady-state serum concentrations of risperidone and 9-hydroxyrisperidone in patients using long-acting injectable risperidone.   J Clin Psychopharmacol. 2009;29(6):537-541. doi:10.1097/JCP.0b013e3181c17df0 PubMedGoogle ScholarCrossref
40.
Mas  S, Gassó  P, Torra  M,  et al; PEPs Group.  Intuitive pharmacogenetic dosing of risperidone according to CYP2D6 phenotype extrapolated from genotype in a cohort of first episode psychosis patients.   Eur Neuropsychopharmacol. 2017;27(7):647-656. doi:10.1016/j.euroneuro.2017.03.012PubMedGoogle ScholarCrossref
41.
Mannheimer  B, Holm  J, Koukel  L, Bertilsson  L, Osby  U, Eliasson  E.  Risperidone metabolic ratio as a biomarker of individual CYP2D6 genotype in schizophrenic patients.   Eur J Clin Pharmacol. 2014;70(6):695-699. doi:10.1007/s00228-014-1664-3 PubMedGoogle ScholarCrossref
42.
Gassó  P, Mas  S, Papagianni  K,  et al.  Effect of CYP2D6 on risperidone pharmacokinetics and extrapyramidal symptoms in healthy volunteers: results from a pharmacogenetic clinical trial.   Pharmacogenomics. 2014;15(1):17-28. doi:10.2217/pgs.13.204PubMedGoogle ScholarCrossref
43.
Scordo  MG, Spina  E, Facciolà  G, Avenoso  A, Johansson  I, Dahl  ML.  Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone.   Psychopharmacology (Berl). 1999;147(3):300-305. doi:10.1007/s002130051171PubMedGoogle ScholarCrossref
44.
De Leon  J, Susce  MT, Pan  RM, Wedlund  PJ, Orrego  ML, Diaz  FJ.  A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels.   Pharmacopsychiatry. 2007;40(3):93-102. doi:10.1055/s-2007-973836PubMedGoogle ScholarCrossref
45.
Novalbos  J, López-Rodríguez  R, Román  M, Gallego-Sandín  S, Ochoa  D, Abad-Santos  F.  Effects of CYP2D6 genotype on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers.   J Clin Psychopharmacol. 2010;30(5):504-511. doi:10.1097/JCP.0b013e3181ee84c7PubMedGoogle ScholarCrossref
46.
Cabaleiro  T, Ochoa  D, López-Rodríguez  R,  et al.  Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers.   Hum Psychopharmacol. 2014;29(5):459-469. doi:10.1002/hup.2420PubMedGoogle ScholarCrossref
47.
Bondolfi  G, Eap  CB, Bertschy  G, Zullino  D, Vermeulen  A, Baumann  P.  The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients.   Pharmacopsychiatry. 2002;35(2):50-56. doi:10.1055/s-2002-25026PubMedGoogle ScholarCrossref
48.
Xiang  Q, Zhao  X, Zhou  Y, Duan  JL, Cui  YM.  Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety.   J Clin Pharmacol. 2010;50(6):659-666. doi:10.1177/0091270009347867PubMedGoogle ScholarCrossref
49.
Jung  SM, Kim  KA, Cho  HK,  et al.  Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients.   Clin Pharmacol Ther. 2005;78(5):520-528. doi:10.1016/j.clpt.2005.07.007PubMedGoogle ScholarCrossref
50.
Yagihashi  T, Mizuno  M, Chino  B,  et al.  Effects of the CYP2D6*10 alleles and co-medication with CYP2D6-dependent drugs on risperidone metabolism in patients with schizophrenia.   Hum Psychopharmacol. 2009;24(4):301-308. doi:10.1002/hup.1025PubMedGoogle ScholarCrossref
51.
Yasui-Furukori  N, Mihara  K, Kondo  T,  et al.  Effects of CYP2D6 genotypes on plasma concentrations of risperidone and enantiomers of 9-hydroxyrisperidone in Japanese patients with schizophrenia.   J Clin Pharmacol. 2003;43(2):122-127. doi:10.1177/0091270002239819PubMedGoogle ScholarCrossref
52.
Kang  RH, Jung  SM, Kim  KA,  et al.  Effects of CYP2D6 and CYP3A5 genotypes on the plasma concentrations of risperidone and 9-hydroxyrisperidone in Korean schizophrenic patients.   J Clin Psychopharmacol. 2009;29(3):272-277. doi:10.1097/JCP.0b013e3181a289e0PubMedGoogle ScholarCrossref
53.
Roh  HK, Kim  CE, Chung  WG, Park  CS, Svensson  JO, Bertilsson  L.  Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients.   Eur J Clin Pharmacol. 2001;57(9):671-675. doi:10.1007/s002280100372PubMedGoogle ScholarCrossref
54.
Suzuki  Y, Fukui  N, Tsuneyama  N,  et al.  Effect of the cytochrome P450 2D6*10 allele on risperidone metabolism in Japanese psychiatric patients.   Hum Psychopharmacol. 2012;27(1):43-46. doi:10.1002/hup.1260PubMedGoogle ScholarCrossref
55.
Yoo  HD, Lee  SN, Kang  HA, Cho  HY, Lee  IK, Lee  YB.  Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of risperidone in healthy subjects with CYP2D6*10/*10.   Br J Pharmacol. 2011;164(2b):433-443. doi:10.1111/j.1476-5381.2011.01385.xPubMedGoogle ScholarCrossref
56.
Mihara  K, Kondo  T, Yasui-Furukori  N,  et al.  Effects of various CYP2D6 genotypes on the steady-state plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, in Japanese patients with schizophrenia.   Ther Drug Monit. 2003;25(3):287-293. doi:10.1097/00007691-200306000-00006PubMedGoogle ScholarCrossref
57.
Cho  HY, Lee  YB.  Pharmacokinetics and bioequivalence evaluation of risperidone in healthy male subjects with different CYP2D6 genotypes.   Arch Pharm Res. 2006;29(6):525-533. doi:10.1007/BF02969428PubMedGoogle ScholarCrossref
58.
Morita  S, Shimoda  K, Someya  T, Yoshimura  Y, Kamijima  K, Kato  N.  Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline.   J Clin Psychopharmacol. 2000;20(2):141-149. doi:10.1097/00004714-200004000-00005PubMedGoogle ScholarCrossref
59.
Lee  SY, Sohn  KM, Ryu  JY, Yoon  YR, Shin  JG, Kim  JW.  Sequence-based CYP2D6 genotyping in the Korean population.   Ther Drug Monit. 2006;28(3):382-387. doi:10.1097/01.ftd.0000211823.80854.dbPubMedGoogle ScholarCrossref
60.
Yue  QY, Zhong  ZH, Tybring  G,  et al.  Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes.   Clin Pharmacol Ther. 1998;64(4):384-390. doi:10.1016/S0009-9236(98)90069-8PubMedGoogle ScholarCrossref
61.
Chen  R, Wang  H, Shi  J, Shen  K, Hu  P.  Cytochrome P450 2D6 genotype affects the pharmacokinetics of controlled-release paroxetine in healthy Chinese subjects: comparison of traditional phenotype and activity score systems.   Eur J Clin Pharmacol. 2015;71(7):835-841. doi:10.1007/s00228-015-1855-6PubMedGoogle ScholarCrossref
62.
Sawamura  K, Suzuki  Y, Someya  T.  Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine.   Eur J Clin Pharmacol. 2004;60(8):553-557. doi:10.1007/s00228-004-0792-6 PubMedGoogle ScholarCrossref
63.
Yoon  YR, Cha  IJ, Shon  JH,  et al.  Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects.   Clin Pharmacol Ther. 2000;67(5):567-576. doi:10.1067/mcp.2000.106128 PubMedGoogle ScholarCrossref
64.
Ohara  K, Tanabu  S, Ishibashi  K, Ikemoto  K, Yoshida  K, Shibuya  H.  CYP2D6*10 alleles do not determine plasma fluvoxamine concentration/dose ratio in Japanese subjects.   Eur J Clin Pharmacol. 2003;58(10):659-661. doi:10.1007/s00228-002-0529-3 PubMedGoogle ScholarCrossref
65.
Sugahara  H, Maebara  C, Ohtani  H,  et al.  Effect of smoking and CYP2D6 polymorphisms on the extent of fluvoxamine-alprazolam interaction in patients with psychosomatic disease.   Eur J Clin Pharmacol. 2009;65(7):699-704. doi:10.1007/s00228-009-0629-4 PubMedGoogle ScholarCrossref
66.
Gerstenberg  G, Aoshima  T, Fukasawa  T,  et al.  Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients.   Ther Drug Monit. 2003;25(4):463-468. doi:10.1097/00007691-200308000-00008 PubMedGoogle ScholarCrossref
67.
Watanabe  J, Suzuki  Y, Fukui  N,  et al.  Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration.   Ther Drug Monit. 2008;30(6):705-708. doi:10.1097/FTD.0b013e31818d73b3 PubMedGoogle ScholarCrossref
68.
Katoh  Y, Uchida  S, Kawai  M,  et al.  Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients.   Biol Pharm Bull. 2010;33(2):285-288. doi:10.1248/bpb.33.285 PubMedGoogle ScholarCrossref
69.
Suzuki  Y, Sugai  T, Fukui  N,  et al.  CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics.   J Psychopharmacol. 2011;25(7):908-914. doi:10.1177/0269881110370504 PubMedGoogle ScholarCrossref
70.
Sirot  EJ, Harenberg  S, Vandel  P,  et al.  Multicenter study on the clinical effectiveness, pharmacokinetics, and pharmacogenetics of mirtazapine in depression.   J Clin Psychopharmacol. 2012;32(5):622-629. doi:10.1097/JCP.0b013e3182664d98 PubMedGoogle ScholarCrossref
71.
Lind  AB, Reis  M, Bengtsson  F,  et al.  Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour.   Clin Pharmacokinet. 2009;48(1):63-70. doi:10.2165/0003088-200948010-00005 PubMedGoogle ScholarCrossref
72.
Kirchheiner  J, Henckel  HB, Meineke  I, Roots  I, Brockmöller  J.  Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers.   J Clin Psychopharmacol. 2004;24(6):647-652. doi:10.1097/01.jcp.0000145341.30547.f0 PubMedGoogle ScholarCrossref
73.
González-Vacarezza  N, Abad-Santos  F, Carcas-Sansuan  A,  et al.  Use of pharmacogenetics in bioequivalence studies to reduce sample size: an example with mirtazapine and CYP2D6.   Pharmacogenomics J. 2013;13(5):452-455. doi:10.1038/tpj.2012.29 PubMedGoogle ScholarCrossref
74.
Park  JY, Shon  JH, Kim  KA,  et al.  Combined effects of itraconazole and CYP2D6*10 genetic polymorphism on the pharmacokinetics and pharmacodynamics of haloperidol in healthy subjects.   J Clin Psychopharmacol. 2006;26(2):135-142. doi:10.1097/01.jcp.0000203199.88581.c3 PubMedGoogle ScholarCrossref
75.
Suzuki  A, Otani  K, Mihara  K,  et al.  Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients.   Pharmacogenetics. 1997;7(5):415-418. doi:10.1097/00008571-199710000-00013 PubMedGoogle ScholarCrossref
76.
Mihara  K, Suzuki  A, Kondo  T,  et al.  Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia.   Clin Pharmacol Ther. 1999;65(3):291-294. doi:10.1016/S0009-9236(99)70108-6 PubMedGoogle ScholarCrossref
77.
Roh  HK, Chung  JY, Oh  DY,  et al.  Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients.   Br J Clin Pharmacol. 2001;52(3):265-271. doi:10.1046/j.0306-5251.2001.01437.x PubMedGoogle ScholarCrossref
78.
Someya  T, Suzuki  Y, Shimoda  K,  et al.  The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population.   Psychiatry Clin Neurosci. 1999;53(5):593-597. doi:10.1046/j.1440-1819.1999.00611.x PubMedGoogle ScholarCrossref
79.
Ohara  K, Tanabu  S, Yoshida  K, Ishibashi  K, Ikemoto  K, Shibuya  H.  Effects of smoking and cytochrome P450 2D6*10 allele on the plasma haloperidol concentration/dose ratio.   Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):945-949. doi:10.1016/S0278-5846(03)00154-4 PubMedGoogle ScholarCrossref
80.
Shimoda  K, Morita  S, Yokono  A,  et al.  CYP2D6*10 alleles are not the determinant of the plasma haloperidol concentrations in Asian patients.   Ther Drug Monit. 2000;22(4):392-396. doi:10.1097/00007691-200008000-00005 PubMedGoogle ScholarCrossref
81.
Inada  T, Senoo  H, Iijima  Y, Yamauchi  T, Yagi  G.  Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients.   Psychiatr Genet. 2003;13(3):163-168. doi:10.1097/00041444-200309000-00005 PubMedGoogle ScholarCrossref
82.
Someya  T, Shimoda  K, Suzuki  Y,  et al.  Effect of CYP2D6 genotypes on the metabolism of haloperidol in a Japanese psychiatric population.   Neuropsychopharmacology. 2003;28(8):1501-1505. doi:10.1038/sj.npp.1300213PubMedGoogle ScholarCrossref
83.
Hermann  M, Hendset  M, Fosaas  K, Hjerpset  M, Refsum  H.  Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele.   Eur J Clin Pharmacol. 2008;64(5):483-487. doi:10.1007/s00228-007-0453-7 PubMedGoogle ScholarCrossref
84.
Whyte  EM, Romkes  M, Mulsant  BH,  et al.  CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly.   Int J Geriatr Psychiatry. 2006;21(6):542-549. doi:10.1002/gps.1522 PubMedGoogle ScholarCrossref
85.
Nichols  AI, Focht  K, Jiang  Q, Preskorn  SH, Kane  CP.  Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study.   Clin Drug Investig. 2011;31(3):155-167. doi:10.2165/11586630-000000000-00000 PubMedGoogle ScholarCrossref
86.
Shams  ME, Arneth  B, Hiemke  C,  et al.  CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine.   J Clin Pharm Ther. 2006;31(5):493-502. doi:10.1111/j.1365-2710.2006.00763.x PubMedGoogle ScholarCrossref
87.
Preskorn  S, Patroneva  A, Silman  H,  et al.  Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in extensive and poor cytochrome P450 2D6 metabolizers.   J Clin Psychopharmacol. 2009;29(1):39-43. doi:10.1097/JCP.0b013e318192e4c1 PubMedGoogle ScholarCrossref
88.
Kringen  MK, Bråten  LS, Haslemo  T, Molden  E.  The influence of combined CYP2D6 and CYP2C19 genotypes on venlafaxine and O-desmethylvenlafaxine concentrations in a large patient cohort.   J Clin Psychopharmacol. 2020;40(2):137-144. doi:10.1097/JCP.0000000000001174 PubMedGoogle ScholarCrossref
89.
Fukuda  T, Nishida  Y, Zhou  Q, Yamamoto  I, Kondo  S, Azuma  J.  The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population.   Eur J Clin Pharmacol. 2000;56(2):175-180. doi:10.1007/s002280050737 PubMedGoogle ScholarCrossref
90.
Jiang  F, Kim  HD, Na  HS,  et al.  The influences of CYP2D6 genotypes and drug interactions on the pharmacokinetics of venlafaxine: exploring predictive biomarkers for treatment outcomes.   Psychopharmacology (Berl). 2015;232(11):1899-1909. doi:10.1007/s00213-014-3825-6 PubMedGoogle ScholarCrossref
91.
Tsai  MH, Lin  KM, Hsiao  MC,  et al.  Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response.   Pharmacogenomics. 2010;11(4):537-546. doi:10.2217/pgs.09.168 PubMedGoogle ScholarCrossref
92.
Hodgson  K, Tansey  K, Dernovsek  MZ,  et al.  Genetic differences in cytochrome P450 enzymes and antidepressant treatment response.   J Psychopharmacol. 2014;28(2):133-141. doi:10.1177/0269881113512041 PubMedGoogle ScholarCrossref
93.
Tsuchimine  S, Ochi  S, Tajiri  M,  et al.  Effects of cytochrome P450 (CYP) 2C19 genotypes on steady-state plasma concentrations of escitalopram and its desmethyl metabolite in Japanese patients with depression.   Ther Drug Monit. 2018;40(3):356-361. doi:10.1097/FTD.0000000000000506 PubMedGoogle ScholarCrossref
94.
Rudberg  I, Hermann  M, Refsum  H, Molden  E.  Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients.   Eur J Clin Pharmacol. 2008;64(12):1181-1188. doi:10.1007/s00228-008-0533-3 PubMedGoogle ScholarCrossref
95.
Saiz-Rodríguez  M, Belmonte  C, Román  M,  et al.  Effect of polymorphisms on the pharmacokinetics, pharmacodynamics and safety of sertraline in healthy volunteers.   Basic Clin Pharmacol Toxicol. 2018;122(5):501-511. doi:10.1111/bcpt.12938 PubMedGoogle ScholarCrossref
96.
Lesche  D, Mostafa  S, Everall  I, Pantelis  C, Bousman  CA.  Impact of CYP1A2, CYP2C19, and CYP2D6 genotype- and phenoconversion-predicted enzyme activity on clozapine exposure and symptom severity.   Pharmacogenomics J. 2020;20(2):192-201. doi:10.1038/s41397-019-0108-y PubMedGoogle ScholarCrossref
97.
Sirot  EJ, Knezevic  B, Morena  GP,  et al.  ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine.   J Clin Psychopharmacol. 2009;29(4):319-326. doi:10.1097/JCP.0b013e3181acc372 PubMedGoogle ScholarCrossref
98.
Vasudev  K, Choi  YH, Norman  R, Kim  RB, Schwarz  UI.  Genetic determinants of clozapine-induced metabolic side effects.   Can J Psychiatry. 2017;62(2):138-149. doi:10.1177/0706743716670128 PubMedGoogle ScholarCrossref
99.
Tóth  K, Csukly  G, Sirok  D,  et al.  Potential role of patients’ CYP3A-status in clozapine pharmacokinetics.   Int J Neuropsychopharmacol. 2017;20(7):529-537. doi:10.1093/ijnp/pyx019 PubMedGoogle ScholarCrossref
100.
Koller  D, Saiz-Rodríguez  M, Zubiaur  P,  et al.  The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial.   Br J Clin Pharmacol. 2020;86(10):2051-2062. Published online April 6, 2020. doi:10.1111/bcp.14300PubMedGoogle ScholarCrossref
101.
Akamine  Y, Sugawara-Kikuchi  Y, Uno  T, Shimizu  T, Miura  M.  Quantification of the steady-state plasma concentrations of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia using a novel HPLC method and the effects of CYPs and ABC transporters polymorphisms.   Ann Clin Biochem. 2017;54(6):677-685. doi:10.1177/0004563216686377PubMedGoogle ScholarCrossref
102.
Ryu  S, Park  S, Lee  JH,  et al.  A Study on CYP2C19 and CYP2D6 polymorphic effects on pharmacokinetics and pharmacodynamics of amitriptyline in healthy Koreans.   Clin Transl Sci. 2017;10(2):93-101. doi:10.1111/cts.12451PubMedGoogle ScholarCrossref
103.
Halling  J, Weihe  P, Brosen  K.  The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population.   Br J Clin Pharmacol. 2008;65(1):134-138. doi:10.1111/j.1365-2125.2007.02969.xPubMedGoogle ScholarCrossref
104.
Steimer  W, Zöpf  K, von Amelunxen  S,  et al.  Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers.   Clin Chem. 2004;50(9):1623-1633. doi:10.1373/clinchem.2003.030825PubMedGoogle ScholarCrossref
105.
Jiang  ZP, Shu  Y, Chen  XP,  et al.  The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects.   Eur J Clin Pharmacol. 2002;58(2):109-113. doi:10.1007/s00228-002-0445-6PubMedGoogle ScholarCrossref
106.
Hayashi  Y, Watanabe  T, Aoki  A,  et al.  Factors affecting steady-state plasma concentrations of enantiomeric mirtazapine and its desmethylated metabolites in Japanese psychiatric patients.   Pharmacopsychiatry. 2015;48(7):279-285. doi:10.1055/s-0035-1565069PubMedGoogle ScholarCrossref
107.
Charlier  C, Broly  F, Lhermitte  M, Pinto  E, Ansseau  M, Plomteux  G.  Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine.   Ther Drug Monit. 2003;25(6):738-742. doi:10.1097/00007691-200312000-00014PubMedGoogle ScholarCrossref
108.
Ververs  FF, Voorbij  HA, Zwarts  P,  et al.  Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy.   Clin Pharmacokinet. 2009;48(10):677-683. doi:10.2165/11318050-000000000-00000PubMedGoogle ScholarCrossref
109.
Dalén  P, Dahl  ML, Bernal Ruiz  ML, Nordin  J, Bertilsson  L.  10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes.   Clin Pharmacol Ther. 1998;63(4):444-452. doi:10.1016/S0009-9236(98)90040-6PubMedGoogle ScholarCrossref
110.
Yasui-Furukori  N, Takahata  T, Nakagami  T,  et al.  Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes.   Br J Clin Pharmacol. 2004;57(4):487-494. doi:10.1111/j.1365-2125.2003.02047.xPubMedGoogle ScholarCrossref
111.
Scordo  MG, Spina  E, Dahl  ML, Gatti  G, Perucca  E.  Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine.   Basic Clin Pharmacol Toxicol. 2005;97(5):296-301. doi:10.1111/j.1742-7843.2005.pto_194.xPubMedGoogle ScholarCrossref
112.
Eap  CB, Bondolfi  G, Zullino  D,  et al.  Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers.   J Clin Psychopharmacol. 2001;21(3):330-334. doi:10.1097/00004714-200106000-00013PubMedGoogle ScholarCrossref
113.
Liu  ZQ, Cheng  ZN, Huang  SL,  et al.  Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects.   Br J Clin Pharmacol. 2001;52(1):96-99. doi:10.1046/j.0306-5251.2001.01402.xPubMedGoogle ScholarCrossref
114.
Bakken  GV, Molden  E, Hermann  M.  Impact of genetic variability in CYP2D6, CYP3A5, and ABCB1 on serum concentrations of quetiapine and N-desalkylquetiapine in psychiatric patients.   Ther Drug Monit. 2015;37(2):256-261. doi:10.1097/FTD.0000000000000135PubMedGoogle ScholarCrossref
115.
Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement.   PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097 PubMedGoogle Scholar
116.
Koller  D, Belmonte  C, Lubomirov  R,  et al.  Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects.   J Psychopharmacol. 2018;32(11):1212-1222. doi:10.1177/0269881118798605 PubMedGoogle ScholarCrossref
117.
Zeier  Z, Carpenter  LL, Kalin  NH,  et al.  Clinical implementation of pharmacogenetic decision support tools for antidepressant drug prescribing.   Am J Psychiatry. 2018;175(9):873-886. doi:10.1176/appi.ajp.2018.17111282 PubMedGoogle ScholarCrossref
118.
Stingl  JC, Brockmöller  J, Viviani  R.  Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function.   Mol Psychiatry. 2013;18(3):273-287. doi:10.1038/mp.2012.42 PubMedGoogle ScholarCrossref
119.
Bousman  CA, Hopwood  M.  Commercial pharmacogenetic-based decision-support tools in psychiatry.   Lancet Psychiatry. 2016;3(6):585-590. doi:10.1016/S2215-0366(16)00017-1PubMedGoogle ScholarCrossref
120.
US Food and Drug Administration. Risperidal drug label. Published June 2009. Accessed June 20, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020272s056,020588s044,021346s033,021444s03lbl.pdf
121.
US Food and Drug Administration. Abilify drug label. Published August 2016. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021436s041,021713s032,021729s024,021866s026lbl.pdf
122.
US Food and Drug Administration. Lexapro drug label. Published January 2017. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021323s047lbl.pdf
123.
US Food and Drug Administration. Zoloft drug label. Published December 2016. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019839S74S86S87_20990S35S44S45lbl.pdf
124.
US Food and Drug Administration. Paxil drug label. Published December 2012. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020031s067,020710s031.pdf
125.
US Food and Drug Administration. Pamelor drug label. Published May 2007. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/018013s58lbl.pdf
126.
McCutcheon  R, Beck  K, D’Ambrosio  E,  et al.  Antipsychotic plasma levels in the assessment of poor treatment response in schizophrenia.   Acta Psychiatr Scand. 2018;137(1):39-46. doi:10.1111/acps.12825PubMedGoogle ScholarCrossref
127.
Veselinović  T, Scharpenberg  M, Heinze  M,  et al; NeSSy Study Group.  Dopamine D2 receptor occupancy estimated from plasma concentrations of four different antipsychotics and the subjective experience of physical and mental well-being in schizophrenia: results from the randomized NeSSy Trial.   J Clin Psychopharmacol. 2019;39(6):550-560. doi:10.1097/JCP.0000000000001131PubMedGoogle ScholarCrossref
128.
Pérez  V, Salavert  A, Espadaler  J,  et al; AB-GEN Collaborative Group.  Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial.   BMC Psychiatry. 2017;17(1):250. doi:10.1186/s12888-017-1412-1PubMedGoogle ScholarCrossref
129.
Bradley  P, Shiekh  M, Mehra  V,  et al.  Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility.   J Psychiatr Res. 2018;96:100-107. doi:10.1016/j.jpsychires.2017.09.024PubMedGoogle ScholarCrossref
130.
Greden  JF, Parikh  SV, Rothschild  AJ,  et al.  Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study.   J Psychiatr Res. 2019;111:59-67. doi:10.1016/j.jpsychires.2019.01.003PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    November 25, 2020

    Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis

    Author Affiliations
    • 1Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
    • 2Department of Psychiatry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
    • 3Psychiatry Clinic, Clinical Centre of Serbia, Belgrade
    • 4Institute for Mental Health, Belgrade, Belgrade, Serbia
    • 5Department of Pharmacokinetics, University of Oslo Pharmacy School, Oslo, Norway
    • 6Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
    • 7Department of Psychiatry and Psychotherapy, Technische Universität München School of Medicine, Munich, Germany
    JAMA Psychiatry. 2021;78(3):270-280. doi:10.1001/jamapsychiatry.2020.3643
    Key Points

    Question  What is the difference in the expected antipsychotic and antidepressant exposure between genetically associated CYP2C19 and CYP2D6 poor (PM), intermediate (IM), and normal (NM) metabolism?

    Findings  A systematic review and meta-analysis of 94 unique studies and 8379 unique patients quantified the increases of risperidone, aripiprazole, and haloperidol exposure in patients with CYP2D6 PM and IM status and increases of escitalopram and sertraline exposure in patients with CYP2C19 PM and IM status as compared with patients with the NM group.

    Meaning  The obtained results represent a scientific foundation for CYP2D6/CYP2C19 genotype-based dosing recommendations that could potentially lead to improved clinical outcome in drug treatment for patients with psychiatric disorders.

    Abstract

    Importance  Precise estimation of the drug metabolism capacity for individual patients is crucial for adequate dose personalization.

    Objective  To quantify the difference in the antipsychotic and antidepressant exposure among patients with genetically associated CYP2C19 and CYP2D6 poor (PM), intermediate (IM), and normal (NM) metabolizers.

    Data Sources  PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to June 30, 2020, with no language restrictions.

    Study Selection  Two independent reviewers performed study screening and assessed the following inclusion criteria: (1) appropriate CYP2C19 or CYP2D6 genotyping was performed, (2) genotype-based classification into CYP2C19 or CYP2D6 NM, IM, and PM categories was possible, and (3) 3 patients per metabolizer category were available.

    Data Extraction and Synthesis  The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed for extracting data and quality, validity, and risk of bias assessments. A fixed-effects model was used for pooling the effect sizes of the included studies.

    Main Outcomes and Measures  Drug exposure was measured as (1) dose-normalized area under the plasma level (time) curve, (2) dose-normalized steady-state plasma level, or (3) reciprocal apparent total drug clearance. The ratio of means (RoM) was calculated by dividing the mean drug exposure for PM, IM, or pooled PM plus IM categories by the mean drug exposure for the NM category.

    Results  Based on the data derived from 94 unique studies and 8379 unique individuals, the most profound differences were observed in the patients treated with aripiprazole (CYP2D6 PM plus IM vs NM RoM, 1.48; 95% CI, 1.41-1.57; 12 studies; 1038 patients), haloperidol lactate (CYP2D6 PM vs NM RoM, 1.68; 95% CI, 1.40-2.02; 9 studies; 423 patients), risperidone (CYP2D6 PM plus IM vs NM RoM, 1.36; 95% CI, 1.28-1.44; 23 studies; 1492 patients), escitalopram oxalate (CYP2C19 PM vs NM, RoM, 2.63; 95% CI, 2.40-2.89; 4 studies; 1262 patients), and sertraline hydrochloride (CYP2C19 IM vs NM RoM, 1.38; 95% CI, 1.27-1.51; 3 studies; 917 patients). Exposure differences were also observed for clozapine, quetiapine fumarate, amitriptyline hydrochloride, mirtazapine, nortriptyline hydrochloride, fluoxetine hydrochloride, fluvoxamine maleate, paroxetine hydrochloride, and venlafaxine hydrochloride; however, these differences were marginal, ambiguous, or based on less than 3 independent studies.

    Conclusions and Relevance  In this systematic review and meta-analysis, the association between CYP2C19/CYP2D6 genotype and drug levels of several psychiatric drugs was quantified with sufficient precision as to be useful as a scientific foundation for CYP2D6/CYP2C19 genotype-based dosing recommendations.

    Introduction

    The efficacy of psychiatric drugs is suboptimal; however, because the development of new antipsychotics and antidepressants is slow, it is of paramount importance to use the currently available drugs as effectively as possible. An important aspect of effective use is dose personalization because, owing to interindividual differences in drug metabolism, the dose required to achieve optimal blood levels of antidepressants and antipsychotics varies substantially between patients.1 Recently published meta-analyses2,3 focused on dose-response curves for antipsychotics and antidepressants supported the claim that the appropriate dosing is important for maximizing the efficacy and tolerability of these drugs. In addition, according to recently published data on more than 5000 patients,4-6 when treated with escitalopram oxalate, 10 mg/d, sertraline hydrochloride, 100 mg/d, risperidone, 4 mg/d, or aripiprazole, 20 mg/d, more than one-third of the patients exhibit blood drug levels outside the therapeutic concentration window defined for these drugs.1 Therefore, although these daily doses fit an average patient well, there is an apparent need to personalize the dose and maximize the treatment response beyond population-based dosing.

    Most antipsychotics and antidepressants are metabolized by the polymorphic CYP2C19 and CYP2D6 enzymes,1 and their capacity is genetically determined.7,8 First, normal metabolizers (NM category) have normal enzymatic capacity and carry homozygous wild-type (Wt) alleles; they may also carry other genotypes if the enzymatic capacity is not significantly different compared with Wt/Wt carriers. Second, CYP2C19/CYP2D6 genotype-determined poor metabolizers (PM category) carry homozygous loss-of-function alleles and do not possess the active enzyme. Third, CYP2C19/CYP2D6 genotype-determined intermediate metabolizers (IM category) carry genotypes connected with substantially reduced but not abolished enzymatic capacity. Finally, CYP2C19/CYP2D6 genotype-determined ultrarapid metabolizers (UM category) carry genotypes connected with higher-than-normal enzymatic capacity. All these phenotypes are present in substantial proportion worldwide (Table 1).9

    Well-replicated clinical findings indicate that the patients in the PM and IM categories exhibit a substantial increase in the exposure and adverse drug reactions of certain psychotropic drugs,4-6,10,11 whereas those in the UM category most often have lower levels of response, owing to faster drug metabolism.4,5,12,13 In addition, recent studies4,5 found that those in the PM and UM categories are more prone to risperidone and escitalopram treatment failure, which was quantified as an increase in the incidence of switching to an alternative antipsychotic/antidepressant within 1 year. The recommended and maximum daily doses are originally designed to fit the mean genotype-weighted population. Thus, the official dosing recommendations for psychiatric drugs usually do not acknowledge the clinical relevance of CYP2C19/CYP2D6 metabolizer categories and do not distinguish between them. Investigators4-6 observed, however, that the daily doses of escitalopram, sertraline, risperidone, and aripiprazole, prescribed in naturalistic settings based on clinical observations alone, were lower in individuals in the PM compared with NM categories and that the observed dose reductions were insufficient to fully compensate for the increased drug exposure. In rare cases, as with aripiprazole treatment, relevant sources such as the US Food and Drug Administration, European Medicines Agency, CPIC (Clinical Pharmacogenetics Implementation Consortium), and DPWG (Dutch Pharmacogenetics Working Group) recommend dose reduction for patients in the CYP2D6 PM category; however, these sources offer conflicting information related to the magnitude of dose adjustment. In fact, most of the recommendations are based on underpowered studies, and insufficient data are available to allow the estimation of the difference in drug exposure between metabolizer categories with sufficient precision.14

    Many previous studies, often of limited sample size, have investigated the effects of CYP2C19 and CYP2D6 genotype on the exposure of antipsychotic and antidepressant drugs, and recently published reports substantially increased the number of participants undergoing genotyping.4-6 Thus, the aim of this systematic review and meta-analysis of prospective and retrospective cohort studies was to quantify, with the best attainable precision, the increase of antidepressant and antipsychotic exposure in individuals in CYP2C19/CYP2D6 PM and IM categories compared with those in the NM category. Individuals in the UM category were not included in the analysis owing to the limited number of studies considering this phenotypic group.

    Methods
    Search Strategy and Selection Criteria

    The list of antipsychotic and antidepressant drugs was based on the list of frequently used antidepressants15 and antipsychotics.16 The investigated antidepressants included escitalopram, sertraline, fluoxetine hydrochloride, fluvoxamine maleate, paroxetine hydrochloride, venlafaxine hydrochloride, amitriptyline hydrochloride, nortriptyline hydrochloride, mianserin, and mirtazapine; the antipsychotics included clozapine, quetiapine fumarate, olanzapine, risperidone, aripiprazole, and haloperidol lactate. Racemic citalopram hydrobromide was not investigated owing to stereoselective metabolism. The information on which CYP450 isoforms are involved in the metabolism of each drug were retrieved from the recent consensus guidelines.1 The search was performed in PubMed, ClinicalTrials.gov, Clinicaltrialsregister.eu, International Clinical Trials Registry Platform, and CENTRAL databases for reports published from January 1, 1990, to June 30, 2020. An independent literature survey was performed for each drug and the search terms *NameOfTheDrug* AND CYP2C19 OR CYP2D6 were used. During the initial screening step, all studies that did not deal with drug exposure were excluded, and the remaining studies were considered for inclusion based on the following criteria: (1) participants were genotyped for all known common functional CYP2C19 or CYP2D6 variant alleles with minor allele frequency of greater than 1% according to Zhou et al9; (2) adequate classification of participants into CYP2C19 and/or CYP2D6 NM, IM, and PM categories was possible based on genotyping; (3) the study included at least 3 participants per experimental group; and (4) drug exposure was measured in a representative way by (a) dose-normalized steady-state plasma levels, (b) dose-normalized area under the plasma level (time) curve, or (c) apparent total clearance of the drug (reciprocal value). The screening and scanning for eligibility were performed manually by 2 independent investigators (F.M. and N.B.). The decision on study inclusion was made by consensus with a third investigator (M.M.J.), with the final checkup made by consensus among 3 (E.M., M.I.-S., and M.M.J.). Six domains were assessed by using the standardized risk of bias in nonrandomized studies of interventions tool,17 and studies with the critical risk of bias were excluded. No restrictions were made regarding the study design, participant characteristics (race, ethnicity, sex, age, smoking status, and patient vs healthy cohort), treatment duration, drug interactions, and language.

    Data Extraction

    The procedures of data acquisition and extraction, as well as the situations when the authors were contacted to provide the data that were inaccessible, are described in full detail in eMethods 1 in the Supplement. If a drug possesses an active metabolite, the drug exposure was calculated by pooling the parent compound and active metabolite (active moiety) exposure.1 Participants were classified into PM, IM, and NM categories for CYP2C19 and CYP2D6 by using the previously described classification criteria (Table 1).18 Participants in the PM category were homozygous carriers of the 2 loss-of-function (null) alleles for both CYP2C19 and CYP2D6. For CYP2C19, participants in the IM category carried 1 null and 1 Wt allele, whereas those in the NM category carried the CYP2C19 Wt/Wt genotype. The CYP2D6 gene possesses alleles that reduce but do not abolish the enzymatic capacity (Red), and the CYP2D6 IM category consisted of participants carrying either CYP2D6 Red/Null or CYP2D6 Red/Red genotype, whereas the subpopulation in the CYP2D6 NM category carries 1 or 2 CYP2D6 Wt alleles. For the purpose of this study, only the individuals carrying the CYP2D6 Wt/Wt genotype represented the NM reference group, as suggested by the consensus guidelines.18

    Statistical Analyses

    Meta-analyses were performed in accordance with the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines,19 and the checklist is available in eMethods 2 in the Supplement. Meta-analyses for specific phenotypes/drugs were performed and represented graphically if 3 or more studies met the inclusion criteria. The effect size was the mean exposure of the PM, IM, or PM plus IM groups divided by the mean exposure of the NM group, that is, the ratio of means (RoM).20 For example, an IM:NM group RoM of 1.5 means a 1.5 times higher exposure (ie, a 50% higher exposure in the IM compared with the NM group). Standard mean differences (Hedges g) were also calculated and presented in eFigure 3 in the Supplement. Weighted RoM between subgroups was used in calculation of pooling effect between studies by fixed-effects meta-analysis model. Heterogeneity across the studies was assessed using the Cochran Q test at a given significance level; the percentage of total variability attributable to heterogeneity was quantified by the I2 value. A fixed-effects model was used because all the pooled studies represent the same genetic/biological construct; however, owing to considerable heterogeneity in certain analyses, a post hoc sensitivity analysis was performed by using the random-effects model, and the comparison between the fixed- and random-effects model analyses is presented in eTable 1 in the Supplement. Differences between the effect sizes of PM vs NM and IM vs NM groups were examined by using the subgroup test, and when no difference was observed, a post hoc comparison between the pooled PM plus IM and NM experimental groups was performed. For each individual study, the PM plus IM experimental group exposure was calculated by combining the PM and IM subgroups according to the Cochrane handbook formula (section 6.5.2.10 on combining groups).21

    Small trial or publication bias was evaluated using the Egger test for funnel plot asymmetry,22 and funnel plots are presented in the eFigure 5 in the Supplement. Statistical analyses were performed with RevMan, version 5.4, software (Cochrane). Ratios of means for the individual studies were calculated using Excel, version 2013 (Microsoft Corporation), according to the previously published formula,20 and subsequently entered into RevMan with the generic inverse variance option. Two-sided α < .05 indicated statistical significance.

    Interpretation of Changes in Drug Exposure

    If a lower boundary of the 95% CI for the drug exposure increase of the PM, IM, or PM plus IM groups compared with the NM group was greater than 1.25-fold, such an effect was considered clinically relevant. If this was not the case for a statistically significant effect, such an effect was considered preliminary or marginal. This quantitative cutoff was based on (1) the US Food and Drug Administration limits for bioequivalence (RoM, 0.80-1.25), which are based on the general consideration that the intraindividual variability in drug exposure from oral drug intake to intake is 20%,23 and (2) the previous finding that changes of this magnitude are associated with an increased risk of therapeutic failure, measured by the drug switch rates in 2 recent studies4,5 on patient cohorts treated with escitalopram (n = 2087) and risperidone (n = 890).

    Results

    Of the 2103 initially screened references, 94 unique studies4-6,24-114 on 8379 unique individuals met the inclusion criteria. Reasons for exclusion are presented in Table 2 and eTable 2 in the Supplement. eFigure 1 in the Supplement gives the PRISMA115 flow diagram. A list of included and excluded studies are presented in eMethods 3 in the Supplement.

    Association Between CYP2D6 Metabolizer Status and Drug Exposure

    The CYP2D6 genotype was associated with significant exposure increases for aripiprazole5,25-33,115,116 (eFigure 2 in the Supplement) (PM plus IM vs NM RoM, 1.48; 95% CI, 1.41-1.57; 12 studies; 1038 patients), haloperidol26,34-36 (eFigure 2 in the Supplement) (PM vs NM RoM, 1.68; 95% CI, 1.40-2.02; 9 studies; 423 patients), and risperidone5,26,35,37-41,43-57 (eFigure 2 in the Supplement) (PM plus IM vs NM RoM, 1.36; 95% CI, 1.28-1.44; 23 studies; 1492 patients). Nortriptyline exposure58-60 (RoM, 2.36; 95% CI, 2.10-2.65; 3 studies; 37 patients) (eFigure 2 in the Supplement) and paroxetine exposure61-63 (RoM, 3.50; 95% CI, 2.52-4.85; 3 studies; 41 patients) (eFigure 2 in the Supplement) were significantly increased in the CYP2D6 IM compared with the NM groups; however, after removing the studies associated with serious risk of bias (eResults in the Supplement), these differences were based on fewer than 3 independent studies. It is uncertain whether the exposure increases observed in the fluvoxamine IM group64-69 and mirtazapine PM group70-73 (eFigure 2 in the Supplement) compared with the NM groups are outside the bioequivalence (1.25) limit. Compared with the CYP2D6 NM group, marginal exposure increases were observed in the haloperidol IM group74-82 (RoM, 1.14; 95% CI, 105-125; 9 studies; 423 patients) (eFigure 2 in the Supplement) and venlafaxine IM plus PM group (RoM, 1.19; 95% CI, 1.09-1.29; 8 studies; 716 patients)83-90 (eFigure 2 in the Supplement). Statistically significant exposure increases based on less than 3 independent studies compared with the CYP2D6 NM group were observed in the quetiapine-treated PM (RoM, 1.32; 95% CI, 1.10-1.58; 1 study; 191 patients), amitriptyline-treated IM (RoM, 1.50; 95% CI, 1.23-1.84; 2 studies; 35 patients), mirtazapine-treated IM (RoM, 1.39; 95% CI, 1.23-1.57; 4 studies; 144 patients), paroxetine-treated PM (RoM, 5.13; 95% CI, 3.82-6.87; 2 studies; 73 patients), nortriptyline-treated PM (RoM, 3.32; 95% CI, 2.08-5.29; 1 study; 9 patients), and fluoxetine-treated PM (RoM, 2.26; 95% CI, 1.68-2.83; 1 study; 11 patients) groups (Table 3).

    Association Between CYP2D6 Metabolizer Status and Drug Exposure

    The CYP2C19 genotype was associated with significant exposure increases for escitalopram (eFigure 2 in the Supplement) (PM vs NM RoM, 2.63; 95% CI, 2.40-2.89; 4 studies; 1262 patients)4,91-93 and sertraline (eFigure 2 in the Supplement) (IM vs NM RoM, 1.38; 95% CI, 1.27-1.51; 3 studies; 917 patients).6,94,95 Considerable heterogeneity was observed in the escitalopram meta-analyses, and the elevation in escitalopram exposure in the CYP2C19 IM group was not observed if the random-effect model was used (eFigure 4 in the Supplement). The CYP2C19 IM and NM groups did not exhibit statistically significant difference in clozapine exposure.96-99 Statistically significant exposure increases based on less than 3 independent studies compared with the CYP2C19 NM group were observed in the clozapine-treated PM (RoM, 1.92; 95% CI, 1.32-2.79; 2 studies; 78 patients), fluoxetine-treated IM (RoM, 1.48; 95% CI, 1.24-1.76; 2 studies; 98 patients) and PM (RoM, 2.94; 95% CI, 2.36-3.67; 1 study; 10 patients), sertraline-treated PM (RoM, 2.70; 95% CI, 2.15-3.39; 2 studies; 577 patients), and venlafaxine-treated IM (RoM, 1.19; 95% CI, 1.11-1.31; 1 study; 669 patients) and PM (RoM, 2.13; 95% CI, 1.54-2.93; 1 study; 443 patients) groups (Table 3).

    Heterogeneity, Small Trial or Publication Bias, and Risk of Bias Assessment

    Significant heterogeneity was observed in the aripiprazole IM and IM plus PM, escitalopram PM and IM, mirtazapine PM, nortriptyline IM, and venlafaxine IM group meta-analyses. No small trial or publication bias was observed in the meta-analyses related to risperidone and aripiprazole (eResults in the Supplement), whereas asymmetry could not be assessed in other meta-analyses owing to the insufficient number of included studies (n < 10).

    According to the standardized risk of bias in nonrandomized studies of interventions tool, 23 studies were associated with a serious risk of bias,24,32,36,38,41,44,46,49,56,58,59,61,62,70,74,79,81,82,86,103,105,107,112 and 71 studies4-6,25-31,33-35,37,39,40,42,43,45,47,48,50-55,57,60,63-69,71-73,75-78,80,83-85,87-102,104,106,108-111,113,114 were associated with moderate risk of bias (ie, the analysis is comparable with a well-performed nonrandomized study). The sensitivity analysis results performed for the studies with moderate risk of bias is presented in eTable 3 and eFigure 6 in the Supplement.

    Discussion

    The results obtained in this systematic review and meta-analysis provide precise quantifications of the differences in antipsychotic and antidepressant drug exposure between patients with PM or IM vs NM CYP2C19/CYP2D6 phenotypes. These results represent scientific foundations for CYP2D6/CYP2C19 genotype-based dosing recommendations, which could lead to improved clinical outcomes in drug treatment of patients with psychiatric disorders.

    Although many studies show that CYP2C19 and CYP2D6 PM and IM groups exhibit a significant increase in drug exposure compared with NM groups, the power of these studies was insufficient to quantify these exposure increases with sufficient precision and to evaluate their prospective clinical relevance. The present set of meta-analyses, which incorporates 8379 CYP2C19 and CYP2D6 genotyped individuals with exposure measurements for 16 frequently used psychiatric drugs, allowed (1) validation of whether CYP2C19 and CYP2D6 PM or IM phenotypes significantly increase the drug exposure compared with the NM phenotype, (2) differentiation between marginal changes and clinically relevant drug exposure increases caused by specific phenotypes, and (3) precise estimation of the magnitude of increase in drug exposure for the clinically relevant exposure changes. High precision of clinically relevant estimates is important for the clinical implementation of appropriate dose recommendations for subpopulations defined by CYP2C19 or CYP2D6 genotype.

    There is a consensus in the field about the relevance of the CYP2C19 and CYP2D6 polymorphism for interindividual variability in drug metabolism and clinical response,117,118 and CYP2C19/CYP2D6 genotyping is already included in all currently commercially available pharmacogenetic tests.119 Pharmacogenomic recommendations on drug labels offer a tool by which knowledge of the specific genotype can be translated to the clinical setting in a quantitative manner. However, the dosing recommendations are usually not uniform among the relevant sources,14 and the dosing recommendations on the US Food and Drug Administration–approved drug labels120-125 clearly do not comply on many points with the findings summarized herein. The results suggest that there is a need to distinguish between CYP2D6 metabolism categories when deciding on aripiprazole, haloperidol, and risperidone doses and to distinguish between CYP2C19 metabolism categories when deciding on escitalopram and sertraline dose. Furthermore, unlike the PM phenotype, the IM phenotype is seldom considered a relevant factor for drug dosing and treatment, which is noteworthy in relation to results and the fact that more than half of the East Asian population and a considerable amount of other populations have the CYP2C19 or CYP2D6 IM phenotype.9

    To approach the question of whether preemptive CYP2C19 and CYP2D6 genotyping can improve the drug treatment outcome of patients with psychiatric disorders, one must (1) demonstrate the effect of serum concentration on adverse effects and efficacy and (2) quantify the effect of genotype on serum concentration. The former has been demonstrated by a series of pharmacokinetic, clinical, and positron emission tomography studies1,126,127 and to an extent by 2 recent meta-analyses on dose-response curves for antidepressants and antipsychotics.2,3 The present report addresses the latter, because it quantifies the effect of PM and IM CYP2C19/CYP2D6 phenotypes on blood levels. Therapeutic drug monitoring can be used as a tool in personalized dosing because it directly measures drug blood levels and encompasses all sources of variability in drug exposure, including CYP2D6/CYP2C19 genotype. However, therapeutic drug monitoring becomes applicable only when the drug level reaches a steady state and is therefore not a suitable tool for preventing the suboptimal response or adverse effects during the initial weeks, or sometimes months, of psychiatric drug treatment. This period is critical for rapid symptom control, patients’ treatment belief, and adherence; in a therapeutic field characterized by a substantial degree of trial and error, preemptive genotyping has a potential to improve dose personalization and subsequently the drug treatment outcome as well. Overall, the optimal dose stabilization would be obtained in an ideal clinical situation, in which a psychiatrist would know the patients’ CYP2D6/CYP2C19 genotype before the drug treatment initiation to make the best possible initial dosing decisions. These decisions can be checked by therapeutic drug monitoring after the steady state is achieved. However, although several industry-sponsored clinical trials128-130 advocate the advantage of genotype-guided over usual treatment in psychiatry, a well-designed trial is still necessary to validate and quantify the clinical utility of preemptive CYP2C19/CYP2D6 genotyping.

    Limitations

    The most important limitation of this report is the potential presence of confounding factors, which arise from the nature of the studies incorporated into meta-analyses. Most of the studies were performed in naturalistic settings, and the factors that are known to affect drug metabolism are seldom completely controlled for. Next, the inclusion and exclusion criteria were designed in a way to eliminate the possibility of erroneous classification into metabolism categories, and this revealed the apparent scarcity of representative studies for many gene-drug interactions. In addition, approximately one-third of the studies that dealt with drug exposure did not measure exposure representatively, and the data were therefore not usable. Although CYP2C19/CYP2D6 UM status may also affect the exposure of certain drugs, and although the CYP2C19 and CYP2D6 PM and/or IM status significantly affect drug exposures of most of the analyzed drugs, more studies and larger cohorts are needed to ascertain the relevance of many gene-drug interactions (eFigure 8 in the Supplement). Also, in some cases, the number of usable studies was relatively low and heterogeneity was considerable; the most notable example is the analysis of CYP2C19-escitalopram interaction with 4 representative studies for each comparison4,91-93 and I2 > 80%. Although the directionality of the effect is apparent, more representative studies on this interaction are needed to precisely quantify the effect size of the exposure increase. Next, it was possible to address the presence of small trial or publication bias only for several comparisons owing to the small number of studies (n < 10) for many gene-drug interactions. Although the test result was negative for the analyzed comparisons, we cannot exclude the possibility that the publication bias is present in some of the gene-drug interaction comparisons to a degree. Finally, we were able to compare the effect of ethnicity in several comparisons by the subgroup test only, and these post hoc tests are presented in the eFigure 7 in the Supplement. Although these test results were negative, we cannot completely exclude the possibility that the exposure increases of certain drugs may be ethnicity dependent to a degree.

    Conclusions

    In this systematic review and meta-analysis, the association between CYP2C19/CYP2D6 genotype and drug levels of aripiprazole, haloperidol, risperidone, escitalopram, and sertraline was quantified with sufficient precision as to be useful as a scientific foundation for CYP2D6/CYP2C19 genotype-based dosing recommendations. In addition, there was an indication that the CYP2C19/CYP2D6 genotype is associated with changes in drug levels of clozapine, quetiapine, amitriptyline, fluvoxamine, fluoxetine, mirtazapine, nortriptyline, paroxetine, and venlafaxine. However, more representative studies focused on these specific gene-drug associations are necessary for an adequate quantification of the magnitude of drug level changes and for representative evaluation of the relevance of these changes.

    Back to top
    Article Information

    Accepted for Publication: September 21, 2020.

    Published Online: November 25, 2020. doi:10.1001/jamapsychiatry.2020.3643

    Corresponding Author: Marin M. Jukić, PharmD, PhD, Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institute, Solnavägen 9, 17165 Solna, Sweden (marin.jukic@ki.se).

    Author Contributions: Dr Jukić had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Milosavljević, Pavlović, Miljević, Pešić, Molden, Ingelman-Sundberg, Jukić.

    Acquisition, analysis, or interpretation of data: Milosavljević, Bukvić, Molden, Ingelman-Sundberg, Leucht, Jukić.

    Drafting of the manuscript: Milosavljević, Bukvić, Molden, Ingelman-Sundberg, Jukić.

    Critical revision of the manuscript for important intellectual content: Milosavljević, Pavlović, Miljević, Pešić, Molden, Ingelman-Sundberg, Leucht, Jukić.

    Statistical analysis: Milosavljević, Bukvić, Jukić.

    Obtained funding: Pavlović, Pešić, Jukić.

    Administrative, technical, or material support: Pavlović, Pešić, Molden, Ingelman-Sundberg, Jukić.

    Supervision: Pavlović, Miljević, Leucht, Jukić.

    Conflict of Interest Disclosures: Dr Miljević reported receiving personal fees from Actavis Generics, Alkaloid AD Skopje, Gedeon Richter, Janssen Pharmaceutica, Krka, and Pfizer, Inc. Dr Ingelman-Sundberg reported being a cofounder and co-owner of the company HepaPredict AB. Dr Leucht reported receiving personal fees from Angelini, Boehringer Ingelheim, Gedeon Richter, Janssen Pharmaceutica, Johnson & Johnson, LB Pharmaceuticals, LTS Lohmann, H Lundbeck A/S, Merck Sharp & Dohme, Otsuka Pharmaceutical Co Ltd, Recordati Rare Diseases, Sandoz, Inc, Sanofi Aventis, Sunovian Pharmaceuticals, Inc, and Teva Pharmaceutical Industries Ltd outside the submitted work. No other disclosures were reported.

    Funding/Support: This study was supported by grant 6066800/PsyCise from the Science Fund of the Republic of Serbia PROMIS program (Dr Jukić), grant 2015-02760 from the Swedish Research Council (Dr Ingelman-Sundberg), grant 668353/U-PGx the European Union’s Horizon 2020 research and innovation program (Dr Ingelman-Sundberg), and grant FO2019-0260 the Swedish Brain foundation (Drs Ingelman-Sundberg and Jukić).

    Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    References
    1.
    Hiemke  C, Bergemann  N, Clement  HW,  et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017.  Pharmacopsychiatry. 2018;51(1-02):9-62. doi:10.1055/s-0043-116492
    2.
    Furukawa  TA, Cipriani  A, Cowen  PJ, Leucht  S, Egger  M, Salanti  G.  Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis.   Lancet Psychiatry. 2019;6(7):601-609. doi:10.1016/S2215-0366(19)30217-2 PubMedGoogle ScholarCrossref
    3.
    Leucht  S, Crippa  A, Siafis  S, Patel  MX, Orsini  N, Davis  JM.  Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia.   Am J Psychiatry. 2020;177(4):342-353. doi:10.1176/appi.ajp.2019.19010034PubMedGoogle ScholarCrossref
    4.
    Jukić  MM, Haslemo  T, Molden  E, Ingelman-Sundberg  M.  Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients.   Am J Psychiatry. 2018;175(5):463-470. doi:10.1176/appi.ajp.2017.17050550 PubMedGoogle ScholarCrossref
    5.
    Jukic  MM, Smith  RL, Haslemo  T, Molden  E, Ingelman-Sundberg  M.  Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study.   Lancet Psychiatry. 2019;6(5):418-426. doi:10.1016/S2215-0366(19)30088-4 PubMedGoogle ScholarCrossref
    6.
    Bråten  LS, Haslemo  T, Jukic  MM, Ingelman-Sundberg  M, Molden  E, Kringen  MK.  Impact of CYP2C19 genotype on sertraline exposure in 1200 Scandinavian patients.   Neuropsychopharmacology. 2020;45(3):570-576. doi:10.1038/s41386-019-0554-xPubMedGoogle ScholarCrossref
    7.
    Gaedigk  A, Sangkuhl  K, Whirl-Carrillo  M, Klein  T, Leeder  JS.  Prediction of CYP2D6 phenotype from genotype across world populations.   Genet Med. 2017;19(1):69-76. doi:10.1038/gim.2016.80PubMedGoogle ScholarCrossref
    8.
    Fricke-Galindo  I, Céspedes-Garro  C, Rodrigues-Soares  F,  et al.  Interethnic variation of CYP2C19 alleles, “predicted” phenotypes and “measured” metabolic phenotypes across world populations.   Pharmacogenomics J. 2016;16(2):113-123. doi:10.1038/tpj.2015.70 PubMedGoogle ScholarCrossref
    9.
    Zhou  Y, Ingelman-Sundberg  M, Lauschke  VM.  Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects.   Clin Pharmacol Ther. 2017;102(4):688-700. doi:10.1002/cpt.690 PubMedGoogle ScholarCrossref
    10.
    Fabbri  C, Tansey  KE, Perlis  RH,  et al.  Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies.   Eur Neuropsychopharmacol. 2018;28(8):945-954. doi:10.1016/j.euroneuro.2018.05.009PubMedGoogle ScholarCrossref
    11.
    de Leon  J, Susce  MT, Pan  RM, Fairchild  M, Koch  WH, Wedlund  PJ.  The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation.   J Clin Psychiatry. 2005;66(1):15-27. doi:10.4088/JCP.v66n0103 PubMedGoogle ScholarCrossref
    12.
    Jukić  MM, Opel  N, Ström  J,  et al.  Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment.   Mol Psychiatry. 2017;22(8):1155-1163. doi:10.1038/mp.2016.204 PubMedGoogle ScholarCrossref
    13.
    Rahikainen  AL, Vauhkonen  P, Pett  H,  et al.  Completed suicides of citalopram users-the role of CYP genotypes and adverse drug interactions.   Int J Legal Med. 2019;133(2):353-363. doi:10.1007/s00414-018-1927-0 PubMedGoogle ScholarCrossref
    14.
    Ingelman-Sundberg  M.  Translation of pharmacogenomic drug labels into the clinic: current problems.   Pharmacol Res. 2020;153:104620. doi:10.1016/j.phrs.2019.104620 PubMedGoogle Scholar
    15.
    Cipriani  A, Furukawa  TA, Salanti  G,  et al.  Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis.   Lancet. 2018;391(10128):1357-1366. doi:10.1016/S0140-6736(17)32802-7 PubMedGoogle ScholarCrossref
    16.
    Leucht  S, Cipriani  A, Spineli  L,  et al.  Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis.   Lancet. 2013;382(9896):951-962. doi:10.1016/S0140-6736(13)60733-3 PubMedGoogle ScholarCrossref
    17.
    Sterne  JA, Hernán  MA, Reeves  BC,  et al.  ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.   BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919 PubMedGoogle ScholarCrossref
    18.
    Caudle  KE, Sangkuhl  K, Whirl-Carrillo  M,  et al.  Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group.   Clin Transl Sci. 2020;13(1):116-124. doi:10.1111/cts.12692 PubMedGoogle ScholarCrossref
    19.
    Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting: Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008 PubMedGoogle ScholarCrossref
    20.
    Friedrich  JO, Adhikari  NKJ, Beyene  J.  The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study.   BMC Med Res Methodol. 2008;8(1):32. doi:10.1186/1471-2288-8-32PubMedGoogle ScholarCrossref
    21.
    Higgins  JPT TJ, Chandler  J, Cumpston  M, Li  T, Page  MJ, Welch  VA.  Cochrane Handbook for Systematic Reviews of Interventions, version 6.1 (updated September 2020). Cochrane; 2020.
    22.
    Sterne  JA, Sutton  AJ, Ioannidis  JP,  et al.  Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials.   BMJ. 2011;343:d4002. doi:10.1136/bmj.d4002 PubMedGoogle ScholarCrossref
    23.
    US Food and Drug Administration. Guidance for Industry  Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations. Center for Drug Evaluation and Research; 2003.
    24.
    Lisbeth  P, Vincent  H, Kristof  M, Bernard  S, Manuel  M, Hugo  N.  Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol.   Eur J Clin Pharmacol. 2016;72(2):175-184. doi:10.1007/s00228-015-1965-1 PubMedGoogle ScholarCrossref
    25.
    Belmonte  C, Ochoa  D, Román  M,  et al.  Influence of CYP2D6, CYP3A4, CYP3A5 and ABCB1 polymorphisms on pharmacokinetics and safety of aripiprazole in healthy volunteers.   Basic Clin Pharmacol Toxicol. 2018;122(6):596-605. doi:10.1111/bcpt.12960 PubMedGoogle ScholarCrossref
    26.
    van der Weide  K, van der Weide  J.  The influence of the CYP3A4*22 polymorphism and CYP2D6 polymorphisms on serum concentrations of aripiprazole, haloperidol, pimozide, and risperidone in psychiatric patients.   J Clin Psychopharmacol. 2015;35(3):228-236. doi:10.1097/JCP.0000000000000319 PubMedGoogle ScholarCrossref
    27.
    Tveito  M, Molden  E, Høiseth  G, Correll  CU, Smith  RL.  Impact of age and CYP2D6 genetics on exposure of aripiprazole and dehydroaripiprazole in patients using long-acting injectable versus oral formulation: relevance of poor and intermediate metabolizer status.   Eur J Clin Pharmacol. 2020;76(1):41-49. doi:10.1007/s00228-019-02768-0 PubMedGoogle ScholarCrossref
    28.
    Suzuki  T, Mihara  K, Nakamura  A,  et al.  Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia.   Ther Drug Monit. 2011;33(1):21-24. doi:10.1097/FTD.0b013e3182031021 PubMedGoogle ScholarCrossref
    29.
    Suzuki  T, Mihara  K, Nakamura  A,  et al.  Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia.   Ther Drug Monit. 2014;36(5):651-655. doi:10.1097/FTD.0000000000000070 PubMedGoogle ScholarCrossref
    30.
    Nagai  G, Mihara  K, Nakamura  A,  et al.  Prolactin concentrations during aripiprazole treatment in relation to sex, plasma drugs concentrations and genetic polymorphisms of dopamine D2 receptor and cytochrome P450 2D6 in Japanese patients with schizophrenia.   Psychiatry Clin Neurosci. 2012;66(6):518-524. doi:10.1111/j.1440-1819.2012.02391.x PubMedGoogle ScholarCrossref
    31.
    Azuma  J, Hasunuma  T, Kubo  M,  et al.  The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine.   Eur J Clin Pharmacol. 2012;68(1):29-37. doi:10.1007/s00228-011-1094-4 PubMedGoogle ScholarCrossref
    32.
    Kubo  M, Koue  T, Inaba  A,  et al.  Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole.   Drug Metab Pharmacokinet. 2005;20(1):55-64. doi:10.2133/dmpk.20.55 PubMedGoogle ScholarCrossref
    33.
    Kubo  M, Koue  T, Maune  H, Fukuda  T, Azuma  J.  Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism.   Drug Metab Pharmacokinet. 2007;22(5):358-366. doi:10.2133/dmpk.22.358 PubMedGoogle ScholarCrossref
    34.
    Desai  M, Tanus-Santos  JE, Li  L,  et al.  Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6.   Pharmacogenomics J. 2003;3(2):105-113. doi:10.1038/sj.tpj.6500160 PubMedGoogle ScholarCrossref
    35.
    Gassó  P, Papagianni  K, Mas  S,  et al.  Relationship between CYP2D6 genotype and haloperidol pharmacokinetics and extrapyramidal symptoms in healthy volunteers.   Pharmacogenomics. 2013;14(13):1551-1563. doi:10.2217/pgs.13.150 PubMedGoogle ScholarCrossref
    36.
    Brockmöller  J, Kirchheiner  J, Schmider  J,  et al.  The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment.   Clin Pharmacol Ther. 2002;72(4):438-452. doi:10.1067/mcp.2002.127494 PubMedGoogle ScholarCrossref
    37.
    Troost  PW, Lahuis  BE, Hermans  MH,  et al.  Prolactin release in children treated with risperidone: impact and role of CYP2D6 metabolism.   J Clin Psychopharmacol. 2007;27(1):52-57. doi:10.1097/JCP.0b013e31802e68d5 PubMedGoogle ScholarCrossref
    38.
    Jovanović  N, Božina  N, Lovrić  M, Medved  V, Jakovljević  M, Peleš  AM.  The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone.   Eur J Clin Pharmacol. 2010;66(11):1109-1117. doi:10.1007/s00228-010-0850-1 PubMedGoogle ScholarCrossref
    39.
    Hendset  M, Molden  E, Refsum  H, Hermann  M.  Impact of CYP2D6 genotype on steady-state serum concentrations of risperidone and 9-hydroxyrisperidone in patients using long-acting injectable risperidone.   J Clin Psychopharmacol. 2009;29(6):537-541. doi:10.1097/JCP.0b013e3181c17df0 PubMedGoogle ScholarCrossref
    40.
    Mas  S, Gassó  P, Torra  M,  et al; PEPs Group.  Intuitive pharmacogenetic dosing of risperidone according to CYP2D6 phenotype extrapolated from genotype in a cohort of first episode psychosis patients.   Eur Neuropsychopharmacol. 2017;27(7):647-656. doi:10.1016/j.euroneuro.2017.03.012PubMedGoogle ScholarCrossref
    41.
    Mannheimer  B, Holm  J, Koukel  L, Bertilsson  L, Osby  U, Eliasson  E.  Risperidone metabolic ratio as a biomarker of individual CYP2D6 genotype in schizophrenic patients.   Eur J Clin Pharmacol. 2014;70(6):695-699. doi:10.1007/s00228-014-1664-3 PubMedGoogle ScholarCrossref
    42.
    Gassó  P, Mas  S, Papagianni  K,  et al.  Effect of CYP2D6 on risperidone pharmacokinetics and extrapyramidal symptoms in healthy volunteers: results from a pharmacogenetic clinical trial.   Pharmacogenomics. 2014;15(1):17-28. doi:10.2217/pgs.13.204PubMedGoogle ScholarCrossref
    43.
    Scordo  MG, Spina  E, Facciolà  G, Avenoso  A, Johansson  I, Dahl  ML.  Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone.   Psychopharmacology (Berl). 1999;147(3):300-305. doi:10.1007/s002130051171PubMedGoogle ScholarCrossref
    44.
    De Leon  J, Susce  MT, Pan  RM, Wedlund  PJ, Orrego  ML, Diaz  FJ.  A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels.   Pharmacopsychiatry. 2007;40(3):93-102. doi:10.1055/s-2007-973836PubMedGoogle ScholarCrossref
    45.
    Novalbos  J, López-Rodríguez  R, Román  M, Gallego-Sandín  S, Ochoa  D, Abad-Santos  F.  Effects of CYP2D6 genotype on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers.   J Clin Psychopharmacol. 2010;30(5):504-511. doi:10.1097/JCP.0b013e3181ee84c7PubMedGoogle ScholarCrossref
    46.
    Cabaleiro  T, Ochoa  D, López-Rodríguez  R,  et al.  Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers.   Hum Psychopharmacol. 2014;29(5):459-469. doi:10.1002/hup.2420PubMedGoogle ScholarCrossref
    47.
    Bondolfi  G, Eap  CB, Bertschy  G, Zullino  D, Vermeulen  A, Baumann  P.  The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients.   Pharmacopsychiatry. 2002;35(2):50-56. doi:10.1055/s-2002-25026PubMedGoogle ScholarCrossref
    48.
    Xiang  Q, Zhao  X, Zhou  Y, Duan  JL, Cui  YM.  Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety.   J Clin Pharmacol. 2010;50(6):659-666. doi:10.1177/0091270009347867PubMedGoogle ScholarCrossref
    49.
    Jung  SM, Kim  KA, Cho  HK,  et al.  Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients.   Clin Pharmacol Ther. 2005;78(5):520-528. doi:10.1016/j.clpt.2005.07.007PubMedGoogle ScholarCrossref
    50.
    Yagihashi  T, Mizuno  M, Chino  B,  et al.  Effects of the CYP2D6*10 alleles and co-medication with CYP2D6-dependent drugs on risperidone metabolism in patients with schizophrenia.   Hum Psychopharmacol. 2009;24(4):301-308. doi:10.1002/hup.1025PubMedGoogle ScholarCrossref
    51.
    Yasui-Furukori  N, Mihara  K, Kondo  T,  et al.  Effects of CYP2D6 genotypes on plasma concentrations of risperidone and enantiomers of 9-hydroxyrisperidone in Japanese patients with schizophrenia.   J Clin Pharmacol. 2003;43(2):122-127. doi:10.1177/0091270002239819PubMedGoogle ScholarCrossref
    52.
    Kang  RH, Jung  SM, Kim  KA,  et al.  Effects of CYP2D6 and CYP3A5 genotypes on the plasma concentrations of risperidone and 9-hydroxyrisperidone in Korean schizophrenic patients.   J Clin Psychopharmacol. 2009;29(3):272-277. doi:10.1097/JCP.0b013e3181a289e0PubMedGoogle ScholarCrossref
    53.
    Roh  HK, Kim  CE, Chung  WG, Park  CS, Svensson  JO, Bertilsson  L.  Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients.   Eur J Clin Pharmacol. 2001;57(9):671-675. doi:10.1007/s002280100372PubMedGoogle ScholarCrossref
    54.
    Suzuki  Y, Fukui  N, Tsuneyama  N,  et al.  Effect of the cytochrome P450 2D6*10 allele on risperidone metabolism in Japanese psychiatric patients.   Hum Psychopharmacol. 2012;27(1):43-46. doi:10.1002/hup.1260PubMedGoogle ScholarCrossref
    55.
    Yoo  HD, Lee  SN, Kang  HA, Cho  HY, Lee  IK, Lee  YB.  Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of risperidone in healthy subjects with CYP2D6*10/*10.   Br J Pharmacol. 2011;164(2b):433-443. doi:10.1111/j.1476-5381.2011.01385.xPubMedGoogle ScholarCrossref
    56.
    Mihara  K, Kondo  T, Yasui-Furukori  N,  et al.  Effects of various CYP2D6 genotypes on the steady-state plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, in Japanese patients with schizophrenia.   Ther Drug Monit. 2003;25(3):287-293. doi:10.1097/00007691-200306000-00006PubMedGoogle ScholarCrossref
    57.
    Cho  HY, Lee  YB.  Pharmacokinetics and bioequivalence evaluation of risperidone in healthy male subjects with different CYP2D6 genotypes.   Arch Pharm Res. 2006;29(6):525-533. doi:10.1007/BF02969428PubMedGoogle ScholarCrossref
    58.
    Morita  S, Shimoda  K, Someya  T, Yoshimura  Y, Kamijima  K, Kato  N.  Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline.   J Clin Psychopharmacol. 2000;20(2):141-149. doi:10.1097/00004714-200004000-00005PubMedGoogle ScholarCrossref
    59.
    Lee  SY, Sohn  KM, Ryu  JY, Yoon  YR, Shin  JG, Kim  JW.  Sequence-based CYP2D6 genotyping in the Korean population.   Ther Drug Monit. 2006;28(3):382-387. doi:10.1097/01.ftd.0000211823.80854.dbPubMedGoogle ScholarCrossref
    60.
    Yue  QY, Zhong  ZH, Tybring  G,  et al.  Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes.   Clin Pharmacol Ther. 1998;64(4):384-390. doi:10.1016/S0009-9236(98)90069-8PubMedGoogle ScholarCrossref
    61.
    Chen  R, Wang  H, Shi  J, Shen  K, Hu  P.  Cytochrome P450 2D6 genotype affects the pharmacokinetics of controlled-release paroxetine in healthy Chinese subjects: comparison of traditional phenotype and activity score systems.   Eur J Clin Pharmacol. 2015;71(7):835-841. doi:10.1007/s00228-015-1855-6PubMedGoogle ScholarCrossref
    62.
    Sawamura  K, Suzuki  Y, Someya  T.  Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine.   Eur J Clin Pharmacol. 2004;60(8):553-557. doi:10.1007/s00228-004-0792-6 PubMedGoogle ScholarCrossref
    63.
    Yoon  YR, Cha  IJ, Shon  JH,  et al.  Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects.   Clin Pharmacol Ther. 2000;67(5):567-576. doi:10.1067/mcp.2000.106128 PubMedGoogle ScholarCrossref
    64.
    Ohara  K, Tanabu  S, Ishibashi  K, Ikemoto  K, Yoshida  K, Shibuya  H.  CYP2D6*10 alleles do not determine plasma fluvoxamine concentration/dose ratio in Japanese subjects.   Eur J Clin Pharmacol. 2003;58(10):659-661. doi:10.1007/s00228-002-0529-3 PubMedGoogle ScholarCrossref
    65.
    Sugahara  H, Maebara  C, Ohtani  H,  et al.  Effect of smoking and CYP2D6 polymorphisms on the extent of fluvoxamine-alprazolam interaction in patients with psychosomatic disease.   Eur J Clin Pharmacol. 2009;65(7):699-704. doi:10.1007/s00228-009-0629-4 PubMedGoogle ScholarCrossref
    66.
    Gerstenberg  G, Aoshima  T, Fukasawa  T,  et al.  Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients.   Ther Drug Monit. 2003;25(4):463-468. doi:10.1097/00007691-200308000-00008 PubMedGoogle ScholarCrossref
    67.
    Watanabe  J, Suzuki  Y, Fukui  N,  et al.  Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration.   Ther Drug Monit. 2008;30(6):705-708. doi:10.1097/FTD.0b013e31818d73b3 PubMedGoogle ScholarCrossref
    68.
    Katoh  Y, Uchida  S, Kawai  M,  et al.  Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients.   Biol Pharm Bull. 2010;33(2):285-288. doi:10.1248/bpb.33.285 PubMedGoogle ScholarCrossref
    69.
    Suzuki  Y, Sugai  T, Fukui  N,  et al.  CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics.   J Psychopharmacol. 2011;25(7):908-914. doi:10.1177/0269881110370504 PubMedGoogle ScholarCrossref
    70.
    Sirot  EJ, Harenberg  S, Vandel  P,  et al.  Multicenter study on the clinical effectiveness, pharmacokinetics, and pharmacogenetics of mirtazapine in depression.   J Clin Psychopharmacol. 2012;32(5):622-629. doi:10.1097/JCP.0b013e3182664d98 PubMedGoogle ScholarCrossref
    71.
    Lind  AB, Reis  M, Bengtsson  F,  et al.  Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour.   Clin Pharmacokinet. 2009;48(1):63-70. doi:10.2165/0003088-200948010-00005 PubMedGoogle ScholarCrossref
    72.
    Kirchheiner  J, Henckel  HB, Meineke  I, Roots  I, Brockmöller  J.  Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers.   J Clin Psychopharmacol. 2004;24(6):647-652. doi:10.1097/01.jcp.0000145341.30547.f0 PubMedGoogle ScholarCrossref
    73.
    González-Vacarezza  N, Abad-Santos  F, Carcas-Sansuan  A,  et al.  Use of pharmacogenetics in bioequivalence studies to reduce sample size: an example with mirtazapine and CYP2D6.   Pharmacogenomics J. 2013;13(5):452-455. doi:10.1038/tpj.2012.29 PubMedGoogle ScholarCrossref
    74.
    Park  JY, Shon  JH, Kim  KA,  et al.  Combined effects of itraconazole and CYP2D6*10 genetic polymorphism on the pharmacokinetics and pharmacodynamics of haloperidol in healthy subjects.   J Clin Psychopharmacol. 2006;26(2):135-142. doi:10.1097/01.jcp.0000203199.88581.c3 PubMedGoogle ScholarCrossref
    75.
    Suzuki  A, Otani  K, Mihara  K,  et al.  Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients.   Pharmacogenetics. 1997;7(5):415-418. doi:10.1097/00008571-199710000-00013 PubMedGoogle ScholarCrossref
    76.
    Mihara  K, Suzuki  A, Kondo  T,  et al.  Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia.   Clin Pharmacol Ther. 1999;65(3):291-294. doi:10.1016/S0009-9236(99)70108-6 PubMedGoogle ScholarCrossref
    77.
    Roh  HK, Chung  JY, Oh  DY,  et al.  Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients.   Br J Clin Pharmacol. 2001;52(3):265-271. doi:10.1046/j.0306-5251.2001.01437.x PubMedGoogle ScholarCrossref
    78.
    Someya  T, Suzuki  Y, Shimoda  K,  et al.  The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population.   Psychiatry Clin Neurosci. 1999;53(5):593-597. doi:10.1046/j.1440-1819.1999.00611.x PubMedGoogle ScholarCrossref
    79.
    Ohara  K, Tanabu  S, Yoshida  K, Ishibashi  K, Ikemoto  K, Shibuya  H.  Effects of smoking and cytochrome P450 2D6*10 allele on the plasma haloperidol concentration/dose ratio.   Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):945-949. doi:10.1016/S0278-5846(03)00154-4 PubMedGoogle ScholarCrossref
    80.
    Shimoda  K, Morita  S, Yokono  A,  et al.  CYP2D6*10 alleles are not the determinant of the plasma haloperidol concentrations in Asian patients.   Ther Drug Monit. 2000;22(4):392-396. doi:10.1097/00007691-200008000-00005 PubMedGoogle ScholarCrossref
    81.
    Inada  T, Senoo  H, Iijima  Y, Yamauchi  T, Yagi  G.  Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients.   Psychiatr Genet. 2003;13(3):163-168. doi:10.1097/00041444-200309000-00005 PubMedGoogle ScholarCrossref
    82.
    Someya  T, Shimoda  K, Suzuki  Y,  et al.  Effect of CYP2D6 genotypes on the metabolism of haloperidol in a Japanese psychiatric population.   Neuropsychopharmacology. 2003;28(8):1501-1505. doi:10.1038/sj.npp.1300213PubMedGoogle ScholarCrossref
    83.
    Hermann  M, Hendset  M, Fosaas  K, Hjerpset  M, Refsum  H.  Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele.   Eur J Clin Pharmacol. 2008;64(5):483-487. doi:10.1007/s00228-007-0453-7 PubMedGoogle ScholarCrossref
    84.
    Whyte  EM, Romkes  M, Mulsant  BH,  et al.  CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly.   Int J Geriatr Psychiatry. 2006;21(6):542-549. doi:10.1002/gps.1522 PubMedGoogle ScholarCrossref
    85.
    Nichols  AI, Focht  K, Jiang  Q, Preskorn  SH, Kane  CP.  Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study.   Clin Drug Investig. 2011;31(3):155-167. doi:10.2165/11586630-000000000-00000 PubMedGoogle ScholarCrossref
    86.
    Shams  ME, Arneth  B, Hiemke  C,  et al.  CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine.   J Clin Pharm Ther. 2006;31(5):493-502. doi:10.1111/j.1365-2710.2006.00763.x PubMedGoogle ScholarCrossref
    87.
    Preskorn  S, Patroneva  A, Silman  H,  et al.  Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in extensive and poor cytochrome P450 2D6 metabolizers.   J Clin Psychopharmacol. 2009;29(1):39-43. doi:10.1097/JCP.0b013e318192e4c1 PubMedGoogle ScholarCrossref
    88.
    Kringen  MK, Bråten  LS, Haslemo  T, Molden  E.  The influence of combined CYP2D6 and CYP2C19 genotypes on venlafaxine and O-desmethylvenlafaxine concentrations in a large patient cohort.   J Clin Psychopharmacol. 2020;40(2):137-144. doi:10.1097/JCP.0000000000001174 PubMedGoogle ScholarCrossref
    89.
    Fukuda  T, Nishida  Y, Zhou  Q, Yamamoto  I, Kondo  S, Azuma  J.  The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population.   Eur J Clin Pharmacol. 2000;56(2):175-180. doi:10.1007/s002280050737 PubMedGoogle ScholarCrossref
    90.
    Jiang  F, Kim  HD, Na  HS,  et al.  The influences of CYP2D6 genotypes and drug interactions on the pharmacokinetics of venlafaxine: exploring predictive biomarkers for treatment outcomes.   Psychopharmacology (Berl). 2015;232(11):1899-1909. doi:10.1007/s00213-014-3825-6 PubMedGoogle ScholarCrossref
    91.
    Tsai  MH, Lin  KM, Hsiao  MC,  et al.  Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response.   Pharmacogenomics. 2010;11(4):537-546. doi:10.2217/pgs.09.168 PubMedGoogle ScholarCrossref
    92.
    Hodgson  K, Tansey  K, Dernovsek  MZ,  et al.  Genetic differences in cytochrome P450 enzymes and antidepressant treatment response.   J Psychopharmacol. 2014;28(2):133-141. doi:10.1177/0269881113512041 PubMedGoogle ScholarCrossref
    93.
    Tsuchimine  S, Ochi  S, Tajiri  M,  et al.  Effects of cytochrome P450 (CYP) 2C19 genotypes on steady-state plasma concentrations of escitalopram and its desmethyl metabolite in Japanese patients with depression.   Ther Drug Monit. 2018;40(3):356-361. doi:10.1097/FTD.0000000000000506 PubMedGoogle ScholarCrossref
    94.
    Rudberg  I, Hermann  M, Refsum  H, Molden  E.  Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients.   Eur J Clin Pharmacol. 2008;64(12):1181-1188. doi:10.1007/s00228-008-0533-3 PubMedGoogle ScholarCrossref
    95.
    Saiz-Rodríguez  M, Belmonte  C, Román  M,  et al.  Effect of polymorphisms on the pharmacokinetics, pharmacodynamics and safety of sertraline in healthy volunteers.   Basic Clin Pharmacol Toxicol. 2018;122(5):501-511. doi:10.1111/bcpt.12938 PubMedGoogle ScholarCrossref
    96.
    Lesche  D, Mostafa  S, Everall  I, Pantelis  C, Bousman  CA.  Impact of CYP1A2, CYP2C19, and CYP2D6 genotype- and phenoconversion-predicted enzyme activity on clozapine exposure and symptom severity.   Pharmacogenomics J. 2020;20(2):192-201. doi:10.1038/s41397-019-0108-y PubMedGoogle ScholarCrossref
    97.
    Sirot  EJ, Knezevic  B, Morena  GP,  et al.  ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine.   J Clin Psychopharmacol. 2009;29(4):319-326. doi:10.1097/JCP.0b013e3181acc372 PubMedGoogle ScholarCrossref
    98.
    Vasudev  K, Choi  YH, Norman  R, Kim  RB, Schwarz  UI.  Genetic determinants of clozapine-induced metabolic side effects.   Can J Psychiatry. 2017;62(2):138-149. doi:10.1177/0706743716670128 PubMedGoogle ScholarCrossref
    99.
    Tóth  K, Csukly  G, Sirok  D,  et al.  Potential role of patients’ CYP3A-status in clozapine pharmacokinetics.   Int J Neuropsychopharmacol. 2017;20(7):529-537. doi:10.1093/ijnp/pyx019 PubMedGoogle ScholarCrossref
    100.
    Koller  D, Saiz-Rodríguez  M, Zubiaur  P,  et al.  The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial.   Br J Clin Pharmacol. 2020;86(10):2051-2062. Published online April 6, 2020. doi:10.1111/bcp.14300PubMedGoogle ScholarCrossref
    101.
    Akamine  Y, Sugawara-Kikuchi  Y, Uno  T, Shimizu  T, Miura  M.  Quantification of the steady-state plasma concentrations of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia using a novel HPLC method and the effects of CYPs and ABC transporters polymorphisms.   Ann Clin Biochem. 2017;54(6):677-685. doi:10.1177/0004563216686377PubMedGoogle ScholarCrossref
    102.
    Ryu  S, Park  S, Lee  JH,  et al.  A Study on CYP2C19 and CYP2D6 polymorphic effects on pharmacokinetics and pharmacodynamics of amitriptyline in healthy Koreans.   Clin Transl Sci. 2017;10(2):93-101. doi:10.1111/cts.12451PubMedGoogle ScholarCrossref
    103.
    Halling  J, Weihe  P, Brosen  K.  The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population.   Br J Clin Pharmacol. 2008;65(1):134-138. doi:10.1111/j.1365-2125.2007.02969.xPubMedGoogle ScholarCrossref
    104.
    Steimer  W, Zöpf  K, von Amelunxen  S,  et al.  Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers.   Clin Chem. 2004;50(9):1623-1633. doi:10.1373/clinchem.2003.030825PubMedGoogle ScholarCrossref
    105.
    Jiang  ZP, Shu  Y, Chen  XP,  et al.  The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects.   Eur J Clin Pharmacol. 2002;58(2):109-113. doi:10.1007/s00228-002-0445-6PubMedGoogle ScholarCrossref
    106.
    Hayashi  Y, Watanabe  T, Aoki  A,  et al.  Factors affecting steady-state plasma concentrations of enantiomeric mirtazapine and its desmethylated metabolites in Japanese psychiatric patients.   Pharmacopsychiatry. 2015;48(7):279-285. doi:10.1055/s-0035-1565069PubMedGoogle ScholarCrossref
    107.
    Charlier  C, Broly  F, Lhermitte  M, Pinto  E, Ansseau  M, Plomteux  G.  Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine.   Ther Drug Monit. 2003;25(6):738-742. doi:10.1097/00007691-200312000-00014PubMedGoogle ScholarCrossref
    108.
    Ververs  FF, Voorbij  HA, Zwarts  P,  et al.  Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy.   Clin Pharmacokinet. 2009;48(10):677-683. doi:10.2165/11318050-000000000-00000PubMedGoogle ScholarCrossref
    109.
    Dalén  P, Dahl  ML, Bernal Ruiz  ML, Nordin  J, Bertilsson  L.  10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes.   Clin Pharmacol Ther. 1998;63(4):444-452. doi:10.1016/S0009-9236(98)90040-6PubMedGoogle ScholarCrossref
    110.
    Yasui-Furukori  N, Takahata  T, Nakagami  T,  et al.  Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes.   Br J Clin Pharmacol. 2004;57(4):487-494. doi:10.1111/j.1365-2125.2003.02047.xPubMedGoogle ScholarCrossref
    111.
    Scordo  MG, Spina  E, Dahl  ML, Gatti  G, Perucca  E.  Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine.   Basic Clin Pharmacol Toxicol. 2005;97(5):296-301. doi:10.1111/j.1742-7843.2005.pto_194.xPubMedGoogle ScholarCrossref
    112.
    Eap  CB, Bondolfi  G, Zullino  D,  et al.  Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers.   J Clin Psychopharmacol. 2001;21(3):330-334. doi:10.1097/00004714-200106000-00013PubMedGoogle ScholarCrossref
    113.
    Liu  ZQ, Cheng  ZN, Huang  SL,  et al.  Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects.   Br J Clin Pharmacol. 2001;52(1):96-99. doi:10.1046/j.0306-5251.2001.01402.xPubMedGoogle ScholarCrossref
    114.
    Bakken  GV, Molden  E, Hermann  M.  Impact of genetic variability in CYP2D6, CYP3A5, and ABCB1 on serum concentrations of quetiapine and N-desalkylquetiapine in psychiatric patients.   Ther Drug Monit. 2015;37(2):256-261. doi:10.1097/FTD.0000000000000135PubMedGoogle ScholarCrossref
    115.
    Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement.   PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097 PubMedGoogle Scholar
    116.
    Koller  D, Belmonte  C, Lubomirov  R,  et al.  Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects.   J Psychopharmacol. 2018;32(11):1212-1222. doi:10.1177/0269881118798605 PubMedGoogle ScholarCrossref
    117.
    Zeier  Z, Carpenter  LL, Kalin  NH,  et al.  Clinical implementation of pharmacogenetic decision support tools for antidepressant drug prescribing.   Am J Psychiatry. 2018;175(9):873-886. doi:10.1176/appi.ajp.2018.17111282 PubMedGoogle ScholarCrossref
    118.
    Stingl  JC, Brockmöller  J, Viviani  R.  Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function.   Mol Psychiatry. 2013;18(3):273-287. doi:10.1038/mp.2012.42 PubMedGoogle ScholarCrossref
    119.
    Bousman  CA, Hopwood  M.  Commercial pharmacogenetic-based decision-support tools in psychiatry.   Lancet Psychiatry. 2016;3(6):585-590. doi:10.1016/S2215-0366(16)00017-1PubMedGoogle ScholarCrossref
    120.
    US Food and Drug Administration. Risperidal drug label. Published June 2009. Accessed June 20, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020272s056,020588s044,021346s033,021444s03lbl.pdf
    121.
    US Food and Drug Administration. Abilify drug label. Published August 2016. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021436s041,021713s032,021729s024,021866s026lbl.pdf
    122.
    US Food and Drug Administration. Lexapro drug label. Published January 2017. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021323s047lbl.pdf
    123.
    US Food and Drug Administration. Zoloft drug label. Published December 2016. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019839S74S86S87_20990S35S44S45lbl.pdf
    124.
    US Food and Drug Administration. Paxil drug label. Published December 2012. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020031s067,020710s031.pdf
    125.
    US Food and Drug Administration. Pamelor drug label. Published May 2007. Accessed June 30, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/018013s58lbl.pdf
    126.
    McCutcheon  R, Beck  K, D’Ambrosio  E,  et al.  Antipsychotic plasma levels in the assessment of poor treatment response in schizophrenia.   Acta Psychiatr Scand. 2018;137(1):39-46. doi:10.1111/acps.12825PubMedGoogle ScholarCrossref
    127.
    Veselinović  T, Scharpenberg  M, Heinze  M,  et al; NeSSy Study Group.  Dopamine D2 receptor occupancy estimated from plasma concentrations of four different antipsychotics and the subjective experience of physical and mental well-being in schizophrenia: results from the randomized NeSSy Trial.   J Clin Psychopharmacol. 2019;39(6):550-560. doi:10.1097/JCP.0000000000001131PubMedGoogle ScholarCrossref
    128.
    Pérez  V, Salavert  A, Espadaler  J,  et al; AB-GEN Collaborative Group.  Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial.   BMC Psychiatry. 2017;17(1):250. doi:10.1186/s12888-017-1412-1PubMedGoogle ScholarCrossref
    129.
    Bradley  P, Shiekh  M, Mehra  V,  et al.  Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility.   J Psychiatr Res. 2018;96:100-107. doi:10.1016/j.jpsychires.2017.09.024PubMedGoogle ScholarCrossref
    130.
    Greden  JF, Parikh  SV, Rothschild  AJ,  et al.  Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study.   J Psychiatr Res. 2019;111:59-67. doi:10.1016/j.jpsychires.2019.01.003PubMedGoogle ScholarCrossref
    ×