Modulation by Muscarinic Antagonists of the Response to Carbon Dioxide Challenge in Panic Disorder | Anxiety Disorders | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Price  LHGoddard  AWBarr  LCGoodman  WK Pharmacological challenges in anxiety disorders. Bloom  FEKupfer  DJeds. Psychopharmacology: The Fourth Generation of Progress. New York, NY Raven Press1995;1311- 1323Google Scholar
2.
Griez  ELousberg  Hvan den Hout  MAvan der Molen  GM CO2 vulnerability in panic disorder.  Psychiatry Res. 1987;2087- 95Google ScholarCrossref
3.
Perna  GBertani  AArancio  CRonchi  PBellodi  L Laboratory response of patients with panic and obsessive-compulsive disorders to 35% CO2 challenge.  Am J Psychiatry. 1995;15285- 89Google Scholar
4.
Klein  DF False suffocation alarms, spontaneous panic, and related conditions.  Arch Gen Psychiatry. 1993;50306- 317Google ScholarCrossref
5.
Gorman  JMLiebowitz  MRFyer  AJStein  J A neuroanatomical hypothesis for panic disorder.  Am J Psychiatry. 1989;146148- 161Google Scholar
6.
Papp  LAMartinez  JMKlein  DFCoplan  JDNorman  RGCole  Rde Jesus  MJRoss  DGoetz  RGorman  JM Respiratory psychophysiology of panic disorder: three respiratory challenges in 98 subjects.  Am J Psychiatry. 1997;1541557- 1565Google Scholar
7.
Jensen  CFKeller  TWPeskind  ERMcFall  MEVeith  RCMartin  DWilkinson  CWRaskind  MA Behavioral and neuroendocrine responses to sodium lactate infusion in subjects with posttraumatic stress disorder.  Am J Psychiatry. 1997;154266- 268Google Scholar
8.
Goddard  AWCharney  DS Toward an integrated neurobiology of panic disorder.  J Clin Psychiatry. 1997;58(suppl)4- 11Google Scholar
9.
Heninger  GR Catecholamines and pathogenesis in panic disorder.  Arch Gen Psychiatry. 1998;55522- 523Google ScholarCrossref
10.
Millhorn  DEEldridge  FL Role of ventrolateral medulla in the regulation of respiratory and cardiovascular systems.  J Appl Physiol. 1986;611249- 1263Google Scholar
11.
Burton  MDJohnson  DKazemi  H CSF acidosis augments ventilation through cholinergic mechanisims.  J Appl Physiol. 1989;662565- 2572Google Scholar
12.
Nattie  EEWood  JMega  AGoritski  W Rostral ventrolateral medulla muscarinic receptors involvement in central ventilatory chemosensitivity.  J Appl Physiol. 1989;661462- 1470Google Scholar
13.
Nattie  EEAihua  L Ventral medulla muscarinic receptor subtypes involved in cardiorespiratory control.  J Appl Physiol. 1990;6933- 41Google Scholar
14.
Burton  MDNouri  MKazemi  H Acetylcholine and central respiratory control: perturbations of acetylcholine synthesis in the isolated brainstem of the neonatal rat.  Brain Res. 1995;67039- 47Google ScholarCrossref
15.
Gozal  DHathout  GKirlew  KTang  HWoo  MSZhang  JLufkin  RBHarper  RM Localization of putative neural respiratory regions in human by functional MRI.  J Appl Physiol. 1994;762076- 2083Google Scholar
16.
Akiyama  YNishimura  MKobayashi  SYamamoto  MMiyamoto  KKawakami  Y Effects of M1 selective antimuscarinics in respiratory chemosensitivity in humans.  Respir Physiol. 1996;103127- 135Google ScholarCrossref
17.
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition.  Washington, DC American Psychiatric Association1987;
18.
Robins  LHelzer  JECottler  LGoldring  E NIMH Diagnostic Interview Schedule: Version III-R.  St Louis, Mo Washington University1989;
19.
Battaglia  MBertella  SPoliti  EBernardeschi  LPerna  GGabriele  ABellodi  L Age at onset of panic disorder: influence of familial liability to the disease and of childhood separation anxiety disorder.  Am J Psychiatry. 1995;1521362- 1364Google Scholar
20.
Battaglia  MBertella  SBajo  SBinaghi  FBellodi  L Anticipation of age at onset in panic disorder.  Am J Psychiatry. 1998;155590- 595Google Scholar
21.
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.  Washington, DC American Psychiatric Association1994;
22.
Argyle  NDeltito  JAllerup  PMaier  WAlbus  MNutzinger  DRasmussen  SAyuso  JLBech  P The Panic-Associated Symptoms Scale: measuring the severity of panic disorder.  Acta Psychiatr Scand. 1991;8320- 26Google ScholarCrossref
23.
Carmine  AABrogden  RN Pirenzepine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in peptic ulcer disease and other allied diseases.  Drugs. 1985;3085- 126Google ScholarCrossref
24.
Yokogawa  KNakashima  EIshizaki  MHasegawa  JKido  HIchimura  F Brain regional pharmacokinetics of biperiden in rats.  Biopharm Drug Dispos. 1992;13131- 140Google ScholarCrossref
25.
Grimaldi  REPerucca  ERuberto  GGelmi  CTrimarchi  FHollmann  MCrema  A Pharmacokinetic and pharmacodynamic studies following the intravenous and oral administration of the antiparkinsonian drug biperiden to normal subjects.  Eur J Clin Pharmacol. 1986;29735- 737Google ScholarCrossref
26.
Battaglia  MPerna  G The 35% CO2 challenge in panic disorder: optimization by receiver operating characteristic analysis.  J Psychiatr Res. 1995;29111- 119Google ScholarCrossref
27.
Harrington  PJSchmidt  NBTelch  MJ Prospective evaluation of panic potentiation following 35% CO2 challenge in nonclinical subjects.  Am J Psychiatry. 1996;153823- 825Google Scholar
28.
Wolpe  J The Practice of Behavior Therapy.  Elmsford, NY Pergamon Press Inc1973;
29.
Pols  HZandbergen  Jde Loof  CGriez  E Attenuation of carbon dioxide–induced panic after clonazepam treatment.  Acta Psychiatr Scand. 1991;84585- 586Google ScholarCrossref
30.
Bellodi  LPerna  GCaldirola  DArancio  CBertani  ADi Bella  D CO2-induced panic attacks: a twin study.  Am J Psychiatry. 1998;1551184- 1188Google Scholar
31.
Fyer  MRUy  JMartinez  JGoetz  RKlein  DFFyer  ALiebowitz  MRGorman  J CO2 challenge of patients with panic disorder.  Am J Psychiatry. 1987;1441080- 1082Google Scholar
32.
Perna  GBattaglia  MGarberi  AArancio  CBertani  ABellodi  L Carbon dioxide/oxygen challenge test in panic disorder.  Psychiatry Res. 1994;52159- 171Google ScholarCrossref
33.
Not Available, Statistica for Windows.  Tulsa, Okla Statsoft1993;
34.
Aston-Jones  GEnnis  MPieribone  VANickell  WTShipley  MT The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network.  Science. 1986;234734- 737Google ScholarCrossref
35.
Torvik  ABredal  A The origin of the reticulospinal fibers in the cat: an experimental study.  Anat Rec. 1957;128113- 137Google ScholarCrossref
36.
Folgering  HKuyper  FKille  JF Primary alveolar hypoventilation (Ondine's curse) in an infant without external arcuate nucleus.  Bull Eur Physiopathol Respir. 1979;15659- 665Google Scholar
37.
Pine  DSWeese-Mayer  DESilvestri  JMDavies  MWhitaker  AHKlein  DF Anxiety and central hypoventilation syndrome.  Am J Psychiatry. 1994;151864- 870Google Scholar
38.
Kinney  HCFiliano  JJSleeper  LAMandell  FValdes-Dapena  MFrost-White  W Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome.  Science. 1995;2691446- 1450Google ScholarCrossref
39.
Coryell  WArndt  S The 35% CO2 inhalation procedure: test-retest reliability.  Biol Psychiatry. 1999;45923- 927Google ScholarCrossref
40.
Roy-Byrne  PPCowley  DS Search for pathophysiology of panic disorder.  Lancet. 1998;3521646- 1647Google ScholarCrossref
41.
Bertani  APerna  GArancio  CCaldirola  DBellodi  L Pharmacologic effect of imipramine, paroxetine, and sertraline on 35% carbon dioxide hypersensitivity in panic patients: a double-blind, random, placebo-controlled study.  J Clin Psychopharmacol. 1997;1797- 101Google ScholarCrossref
Original Article
February 2001

Modulation by Muscarinic Antagonists of the Response to Carbon Dioxide Challenge in Panic Disorder

Author Affiliations

From the Developmental Psychopathology Unit, Department of Psychology, University Vita-Salute San Raffaele (Drs Battaglia and Ogliari), and the Department of Neuropsychiatric Sciences, Istituto Scientifico San Raffaele Hospital (Drs Battaglia, Ogliari, Bellodi, and Smeraldi), Milan, and the Department of Child Psychiatry, Istituto Scientifico Eugenio Medea, Bosisio Parini, Lecco (Dr Bertella), Italy.

Arch Gen Psychiatry. 2001;58(2):114-119. doi:10.1001/archpsyc.58.2.114
Abstract

Background  Panic attacks can be induced in persons with panic disorder by inhalation of carbon dioxide. Hypercapnia also elicits a reflex hyperventilation, which is controlled in part by cholinergic mechanisms. This study investigated whether the exaggerated response to carbon dioxide in panic disorder (PD) can be modulated by antagonists of muscarinic cholinergic receptors.

Methods  Twelve patients with PD received biperiden hydrochloride (a muscarinic antagonist that crosses the blood-brain barrier), pirenzepine hydrochloride (a muscarinic antagonist that does not cross the blood-brain barrier), or placebo 2 hours before a 35% carbon dioxide–65% oxygen respiratory challenge (vs air as a placebo) on 3 separate days, in a double-blind, random crossover design.

Results  According to patients' self-ratings of subjective anxiety, inhalation of the carbon dioxide/oxygen mixture provoked a significant and intense response after treatment with pirenzepine and placebo. After biperiden treatment, however, hypercapnia elicited a response profile similar to that elicited by air, whereby subjective anxiety remained similar to preinhalation levels.

Conclusions  Consistent with the hypothesis of the study, a centrally active muscarinic antagonist can block the response to carbon dioxide commonly observed in subjects with PD.

×