[Skip to Navigation]
Sign In
Figure. 
Illustration of the P values from the 3-marker sliding-window haplotype tests for association with bipolar disorder (BPI) for sialyltransferase 4A (SIAT4A) (A), tachykinin receptor 1 (TACR1) (B), γ-aminobutyric acidA β2
receptor subunit (GABRB2) (C), and disrupted-in-schizophrenia 1 (DISC1) (D). Part A also illustrates the sliding-window haplotype test results for association with the psychosis phenotype for SIAT4A. chr Indicates chromosome;
Mb, megabase; and SNP, single-nucleotide polymorphism.

Illustration of the P values from the 3-marker sliding-window haplotype tests for association with bipolar disorder (BPI) for sialyltransferase 4A (SIAT4A) (A), tachykinin receptor 1 (TACR1) (B), γ-aminobutyric acidA β2 receptor subunit (GABRB2) (C), and disrupted-in-schizophrenia 1 (DISC1) (D). Part A also illustrates the sliding-window haplotype test results for association with the psychosis phenotype for SIAT4A. chr Indicates chromosome; Mb, megabase; and SNP, single-nucleotide polymorphism.

Table. 
Gene-Based Test for Association With Bipolar Disorder
Gene-Based Test for Association With Bipolar Disorder
1.
Kessler  RCChiu  WTDemler  OMerikangas  KRWalters  EE Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.  Arch Gen Psychiatry 2005;62 (6) 617- 627[published correction appears in Arch Gen Psychiatry. 2005;62(7):709].PubMedGoogle Scholar
2.
Mitchell  PBSlade  TAndrews  G Twelve-month prevalence and disability of DSM-IV bipolar disorder in an Australian general population survey.  Psychol Med 2004;34 (5) 777- 785PubMedGoogle Scholar
3.
Altshuler  LLPost  RMBlack  DOKeck  PE  JrNolen  WAFrye  MASuppes  TGrunze  HKupka  RWLeverich  GSMcElroy  SLWalden  JMintz  J Subsyndromal depressive symptoms are associated with functional impairment in patients with bipolar disorder: results of a large, multisite study.  J Clin Psychiatry 2006;67 (10) 1551- 1560PubMedGoogle Scholar
4.
Hammen  CGitlin  M Stress reactivity in bipolar patients and its relation to prior history of disorder.  Am J Psychiatry 1997;154 (6) 856- 857PubMedGoogle Scholar
5.
Gershon  ESHamovit  JGuroff  JJDibble  ELeckman  JFSceery  WTargum  SDNurnberger  JI  JrGoldin  LRBunney  WE  Jr A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands.  Arch Gen Psychiatry 1982;39 (10) 1157- 1167PubMedGoogle Scholar
6.
Cardno  AGMarshall  EJCoid  BMacdonald  AMRibchester  TRDavies  NJVenturi  PJones  LALewis  SWSham  PCGottesman  IIFarmer  AEMcGuffin  PReveley  AMMurray  RM Heritability estimates for psychotic disorders: the Maudsley twin psychosis series.  Arch Gen Psychiatry 1999;56 (2) 162- 168PubMedGoogle Scholar
7.
McQueen  MBDevlin  BFaraone  SVNimgaonkar  VLSklar  PSmoller  JWAbou Jamra  RAlbus  MBacanu  SABaron  MBarrett  TBBerrettini  WBlacker  DByerley  WCichon  SCoryell  WCraddock  NDaly  MJDepaulo  JREdenberg  HJForoud  TGill  MGilliam  TCHamshere  MJones  IJones  LJuo  SHKelsoe  JRLambert  DLange  CLerer  BLiu  JMaier  WMackinnon  JDMcInnis  MGMcMahon  FJMurphy  DLNothen  MMNurnberger  JIPato  CNPato  MTPotash  JBPropping  PPulver  AERice  JPRietschel  MScheftner  WSchumacher  JSegurado  RVan Steen  KXie  WZandi  PPLaird  NM Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q.  Am J Hum Genet 2005;77 (4) 582- 595PubMedGoogle Scholar
8.
Hirschfeld  RABowden  CLGitlin  MJKeck  PEPerlis  RHSuppes  TThase  MEWagner  KD Practice guideline for the treatment of patients with bipolar disorder (revision).  Am J Psychiatry 2002;159 (4) ((suppl)) 1- 50Google Scholar
9.
Perlis  RHKeck  PE The Texas implementation of medication algorithms update for treatment of bipolar I disorder.  J Clin Psychiatry 2005;66 (7) 818- 820PubMedGoogle Scholar
10.
Suppes  TDennehy  EBHirschfeld  RMAltshuler  LLBowden  CLCalabrese  JRCrismon  MLKetter  TASachs  GSSwann  ACTexas Consensus Conference Panel on Medication Treatment of Bipolar Disorder, The Texas implementation of medication algorithms: update to the algorithms for treatment of bipolar I disorder.  J Clin Psychiatry 2005;66 (7) 870- 886PubMedGoogle Scholar
11.
Altshuler  DHirschhorn  JNKlannemark  MLindgren  CMVohl  MCNemesh  JLane  CRSchaffner  SFBolk  SBrewer  CTuomi  TGaudet  DHudson  TJDaly  MGroop  LLander  ES The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.  Nat Genet 2000;26 (1) 76- 80PubMedGoogle Scholar
12.
Saxena  RGianniny  LBurtt  NPLyssenko  VGiuducci  CSjögren  MFlorez  JCAlmgren  PIsomaa  BOrho-Melander  MLindblad  UDaly  MJTuomi  THirschhorn  JNArdlie  KGGroop  LCAltshuler  D Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals.  Diabetes 2006;55 (10) 2890- 2895PubMedGoogle Scholar
13.
Holmkvist  JCervin  CLyssenko  VWinckler  WAnevski  DCilio  CAlmgren  PBerglund  GNilsson  PTuomi  TLindgren  CMAltshuler  DGroop  L Common variants in HNF-1 α and risk of type 2 diabetes.  Diabetologia 2006;49 (12) 2882- 2891PubMedGoogle Scholar
14.
Caspi  ASugden  KMoffitt  TETaylor  ACraig  IWHarrington  HMcClay  JMill  JMartin  JBraithwaite  APoulton  R Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.  Science 2003;301 (5631) 386- 389PubMedGoogle Scholar
15.
Mendlewicz  JFieve  RRStallone  F Relationship between the effectiveness of lithium therapy and family history.  Am J Psychiatry 1973;130 (9) 1011- 1013PubMedGoogle Scholar
16.
Grof  PAlda  MGrof  EZvolsky  PWalsh  M Lithium response and genetics of affective disorders.  J Affect Disord 1994;32 (2) 85- 95PubMedGoogle Scholar
17.
Dunner  DLFleiss  JLFieve  RR Lithium carbonate prophylaxis failure.  Br J Psychiatry 1976;12940- 44PubMedGoogle Scholar
18.
Misra  PCBurns  BH “Lithium non-responders” in a lithium clinic.  Acta Psychiatr Scand 1977;55 (1) 32- 40PubMedGoogle Scholar
19.
Engström  CAstrom  MNordqvist-Karlsson  BAdolfsson  RNylander  PO Relationship between prophylactic effect of lithium therapy and family history of affective disorders.  Biol Psychiatry 1997;42 (6) 425- 433PubMedGoogle Scholar
20.
Berridge  MJDownes  CPHanley  MR Neural and developmental actions of lithium: a unifying hypothesis.  Cell 1989;59 (3) 411- 419PubMedGoogle Scholar
21.
Williams  RSEames  MRyves  WJViggars  JHarwood  AJ Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate.  EMBO J 1999;18 (10) 2734- 2745PubMedGoogle Scholar
22.
Chalecka-Franaszek  EChuang  DM Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons.  Proc Natl Acad Sci U S A 1999;96 (15) 8745- 8750PubMedGoogle Scholar
23.
Klein  PSMelton  DA A molecular mechanism for the effect of lithium on development.  Proc Natl Acad Sci U S A 1996;93 (16) 8455- 8459PubMedGoogle Scholar
24.
Stambolic  VRuel  LWoodgett  JR Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells.  Curr Biol 1996;6 (12) 1664- 1668PubMedGoogle Scholar
25.
Lucas  FRSalinas  PC WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons.  Dev Biol 1997;192 (1) 31- 44PubMedGoogle Scholar
26.
Hedgepeth  CMConrad  LJZhang  JHuang  HCLee  VMKlein  PS Activation of the Wnt signaling pathway: a molecular mechanism for lithium action.  Dev Biol 1997;185 (1) 82- 91PubMedGoogle Scholar
27.
Nelson  RWGumbiner  BM A cell-free assay system for β-catenin signaling that recapitulates direct inductive events in the early xenopus laevis embryo.  J Cell Biol 1999;147 (2) 367- 374PubMedGoogle Scholar
28.
Rhoads  ARKarkera  JDDetera-Wadleigh  SD Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway.  Mol Psychiatry 1999;4 (5) 437- 442PubMedGoogle Scholar
29.
O’Brien  WTHarper  ADJové  FWoodgett  JRMaretto  SPiccolo  SKlein  PS Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium.  J Neurosci 2004;24 (30) 6791- 6798PubMedGoogle Scholar
30.
Phiel  CJKlein  PS Molecular targets of lithium action.  Annu Rev Pharmacol Toxicol 2001;41789- 813PubMedGoogle Scholar
31.
Hashimoto  RHough  CNakazawa  TYamamoto  TChuang  DM Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation.  J Neurochem 2002;80 (4) 589- 597PubMedGoogle Scholar
32.
Ogden  CARich  MESchork  NJPaulus  MPGeyer  MALohr  JBKuczenski  RNiculescu  AB Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach.  Mol Psychiatry 2004;9 (11) 1007- 1029PubMedGoogle Scholar
33.
Tkachev  DMimmack  MLRyan  MMWayland  MFreeman  TJones  PBStarkey  MWebster  MJYolken  RHBahn  S Oligodendrocyte dysfunction in schizophrenia and bipolar disorder.  Lancet 2003;362 (9386) 798- 805PubMedGoogle Scholar
34.
Phiel  CJZhang  FHuang  EYGuenther  MGLazar  MAKlein  PS Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.  J Biol Chem 2001;276 (39) 36734- 36741PubMedGoogle Scholar
35.
Thomson  PAWray  NRMillar  JKEvans  KLHellard  SLCondie  AMuir  WJBlackwood  DHPorteous  DJ Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population.  Mol Psychiatry 2005;10 (7) 657- 668PubMedGoogle Scholar
36.
Hodgkinson  CAGoldman  DJaeger  JPersaud  SKane  JMLipsky  RHMalhotra  AK Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder.  Am J Hum Genet 2004;75 (5) 862- 872PubMedGoogle Scholar
37.
Walss-Bass  CRaventos  HMontero  APArmas  RDassori  AContreras  SLiu  WMedina  RLevinson  DFPereira  MLeach  RJAlmasy  LEscamilla  MA Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population.  Acta Psychiatr Scand 2006;113 (4) 314- 321PubMedGoogle Scholar
38.
Petryshen  TLMiddleton  FAKirby  AAldinger  KAPurcell  STahl  ARMorley  CPMcGann  LGentile  KLRockwell  GNMedeiros  HMCarvalho  CMacedo  ADourado  AValente  JFerreira  CPPatterson  NJAzevedo  MHDaly  MJPato  CNPato  MTSklar  P Support for involvement of neuregulin 1 in schizophrenia pathophysiology.  Mol Psychiatry 2005;10 (4) 366- 374PubMedGoogle Scholar
39.
Green  EKRaybould  RMacgregor  SGordon-Smith  KHeron  JHyde  SGrozeva  DHamshere  MWilliams  NOwen  MJO’Donovan  MCJones  LJones  IKirov  GCraddock  N Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder.  Arch Gen Psychiatry 2005;62 (6) 642- 648PubMedGoogle Scholar
40.
Sawamura  NSawa  A Disrupted-in-schizophrenia-1 (DISC1): a key susceptibility factor for major mental illnesses.  Ann N Y Acad Sci 2006;1086126- 133PubMedGoogle Scholar
41.
Tochigi  MZhang  XOhashi  JHibino  HOtowa  TRogers  MKato  TOkazaki  YKato  NTokunaga  KSasaki  T Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population.  Neurosci Res 2006;56 (2) 154- 158PubMedGoogle Scholar
42.
Van Den Bogaert  ASchumacher  JSchulze  TGOtte  ACOhlraun  SKovalenko  SBecker  TFreudenberg  JJönsson  EGMattila-Evenden  MSedvall  GCCzerski  PMKapelski  PHauser  JMaier  WRietschel  MPropping  PNöthen  MMCichon  S The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease.  Am J Hum Genet 2003;73 (6) 1438- 1443PubMedGoogle Scholar
43.
Schwab  SGKnapp  MMondabon  SHallmayer  JBorrmann-Hassenbach  MAlbus  MLerer  BRietschel  MTrixler  MMaier  WWildenauer  DB Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families.  Am J Hum Genet 2003;72 (1) 185- 190PubMedGoogle Scholar
44.
Straub  REJiang  YMacLean  CJMa  YWebb  BTMyakishev  MVHarris-Kerr  CWormley  BSadek  HKadambi  BCesare  AJGibberman  AWang  XO’Neill  FAWalsh  DKendler  KS Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia.  Am J Hum Genet 2002;71 (2) 337- 348PubMedGoogle Scholar
45.
Van Den Bogaert  ASleegers  KDe Zutter  SHeyrman  LNorrback  KFAdolfsson  RVan Broeckhoven  CDel-Favero  J Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population.  Arch Gen Psychiatry 2006;63 (10) 1103- 1110PubMedGoogle Scholar
46.
Zill  PBaghai  TCZwanzger  PSchüle  CEser  DRupprecht  RMöller  HJBondy  BAckenheil  M SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression.  Mol Psychiatry 2004;9 (11) 1030- 1036PubMedGoogle Scholar
47.
Edenberg  HJForoud  TConneally  PMSorbel  JJCarr  KCrose  CWillig  CZhao  JMiller  MBowman  EMayeda  ARau  NLSmiley  CRice  JPGoate  AReich  TStine  OCMcMahon  FDePaulo  JRMeyers  DDetera-Wadleigh  SDGoldin  LRGershon  ESBlehar  MCNurnberger  JI  Jr Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22.  Am J Med Genet 1997;74 (3) 238- 246PubMedGoogle Scholar
48.
Nurnberger  JI  JrBlehar  MCKaufmann  CAYork-Cooler  CSimpson  SGHarkavy-Friedman  JSevere  JBMalaspina  DReich  T Diagnostic interview for genetic studies: rationale, unique features, and training: NIMH Genetics Initiative.  Arch Gen Psychiatry 1994;51 (11) 849- 859, 863-864PubMedGoogle Scholar
49.
Hattori  ELiu  CBadner  JAChristian  SLMaheshwari  MDetera-Wadleigh  SDGibbs  RAGershon  ES Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series.  Am J Hum Genet 2003;72 (5) 1131- 1140PubMedGoogle Scholar
50.
de Bakker  PIYelensky  RPe’er  IGabriel  SBDaly  MJAltshuler  D Efficiency and power in genetic association studies.  Nat Genet 2005;37 (11) 1217- 1223PubMedGoogle Scholar
51.
Hemminger  BMSaelim  BSullivan  PF TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits.  Bioinformatics 2006;22 (5) 626- 627PubMedGoogle Scholar
52.
Gunderson  KLKruglyak  SGraige  MSGarcia  FKermani  BGZhao  CChe  DDickinson  TWickham  EBierle  JDoucet  DMilewski  MYang  RSiegmund  CHaas  JZhou  LOliphant  AFan  JBBarnard  SChee  MS Decoding randomly ordered DNA arrays.  Genome Res 2004;14 (5) 870- 877PubMedGoogle Scholar
53.
Neale  BMSham  PC The future of association studies: gene-based analysis and replication.  Am J Hum Genet 2004;75 (3) 353- 362PubMedGoogle Scholar
54.
Purcell  SNeale  BMTodd-Brown  KThomas  LFerreira  MABender  DMaller  JSklar  Pde Bakker  PIDaly  MJSham  PC PLINK: a toolset for whole genome association and population-based linkage analyses.  Am J Hum Genet 2007;81 (3) 559- 575PubMedGoogle Scholar
55.
Ott  JHoh  J Set association analysis of SNP case-control and microarray data.  J Comput Biol 2003;10 (3-4) 569- 574PubMedGoogle Scholar
56.
Spielman  RSEwens  WJ The TDT and other family-based tests for linkage disequilibrium and association.  Am J Hum Genet 1996;59 (5) 983- 989PubMedGoogle Scholar
57.
Martin  ERKaplan  NLWeir  BS Tests for linkage and association in nuclear families.  Am J Hum Genet 1997;61 (2) 439- 448PubMedGoogle Scholar
58.
Purcell  SDaly  MJSham  PC WHAP: haplotype-based association analysis.  Bioinformatics 2007;23 (2) 255- 256PubMedGoogle Scholar
59.
Barrett  JCFry  BMaller  JDaly  MJ Haploview: analysis and visualization of LD and haplotype maps.  Bioinformatics 2005;21 (2) 263- 265PubMedGoogle Scholar
60.
Purcell  SCherny  SSSham  PC Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits.  Bioinformatics 2003;19 (1) 149- 150PubMedGoogle Scholar
61.
Petryshen  TLMiddleton  FATahl  ARRockwell  GNPurcell  SAldinger  KAKirby  AMorley  CPMcGann  LGentile  KLWaggoner  SGMedeiros  HMCarvalho  CMacedo  AAlbus  MMaier  WTrixler  MEichhammer  PSchwab  SGWildenauer  DBAzevedo  MHPato  MTPato  CNDaly  MJSklar  P Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.  Mol Psychiatry 2005;10 (12) 1074- 1088PubMedGoogle Scholar
62.
Lo  WSLau  CFXuan  ZChan  CFFeng  GYHe  LCao  ZCLiu  HLuan  QMXue  H Association of SNPs and haplotypes in GABAA receptor β2 gene with schizophrenia.  Mol Psychiatry 2004;9 (6) 603- 608PubMedGoogle Scholar
63.
Kitagawa  HPaulson  JC Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups.  J Biol Chem 1994;269 (2) 1394- 1401PubMedGoogle Scholar
64.
Ono  KTomasiewicz  HMagnuson  TRutishauser  U N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid.  Neuron 1994;13 (3) 595- 609PubMedGoogle Scholar
65.
Vawter  MPHoward  ALHyde  TMKleinman  JEFreed  WJ Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia.  Mol Psychiatry 1999;4 (5) 467- 475PubMedGoogle Scholar
66.
Baysal  BEWillett-Brozick  JEBadner  JACorona  WFerrell  RENimgaonkar  VLDetera-Wadleigh  SD A mannosyltransferase gene at 11q23 is disrupted by a translocation breakpoint that co-segregates with bipolar affective disorder in a small family.  Neurogenetics 2002;4 (1) 43- 53PubMedGoogle Scholar
67.
Arai  MYamada  KToyota  TObata  NHaga  SYoshida  YNakamura  KMinabe  YUjike  HSora  IIkeda  KMori  NYoshikawa  TItokawa  M Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia.  Biol Psychiatry 2006;59 (7) 652- 659PubMedGoogle Scholar
68.
Kitagawa  HPaulson  JC Differential expression of five sialyltransferase genes in human tissues.  J Biol Chem 1994;269 (27) 17872- 17878PubMedGoogle Scholar
69.
Murtra  PSheasby  AMHunt  SPDe Felipe  C Rewarding effects of opiates are absent in mice lacking the receptor for substance P.  Nature 2000;405 (6783) 180- 183PubMedGoogle Scholar
70.
Burnet  PWHarrison  PJ Substance P (NK1) receptors in the cingulate cortex in unipolar and bipolar mood disorder and schizophrenia.  Biol Psychiatry 2000;47 (1) 80- 83PubMedGoogle Scholar
71.
van der Hart  MGde Biurrun  GCzeh  BRupniak  NMden Boer  JAFuchs  E Chronic psychosocial stress in tree shrews: effect of the substance P (NK1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters.  Psychopharmacology (Berl) 2005;181 (2) 207- 216PubMedGoogle Scholar
72.
Kramer  MSCutler  NFeighner  JShrivastava  RCarman  JSramek  JJReines  SALiu  GSnavely  DWyatt-Knowles  EHale  JJMills  SGMacCoss  MSwain  CJHarrison  THill  RGHefti  FScolnick  EMCascieri  MAChicchi  GGSadowski  SWilliams  ARHewson  LSmith  DCarlson  EJHargreaves  RJRupniak  NM Distinct mechanism for antidepressant activity by blockade of central substance P receptors.  Science 1998;281 (5383) 1640- 1645PubMedGoogle Scholar
73.
Keller  MMontgomery  SBall  WMorrison  MSnavely  DLiu  GHargreaves  RHietala  JLines  CBeebe  KReines  S Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder.  Biol Psychiatry 2006;59 (3) 216- 223PubMedGoogle Scholar
74.
Sun  XYoung  LTWang  JFGrof  PTurecki  GRouleau  GAAlda  M Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder.  Neuropsychopharmacology 2004;29 (4) 799- 804PubMedGoogle Scholar
75.
Mendlewicz  JOswald  PClaes  SMassat  ISouery  DVan Broeckhoven  CDel-Favero  J Patient-control association study of substance P-related genes in unipolar and bipolar affective disorders.  Int J Neuropsychopharmacol 2005;8 (4) 505- 513PubMedGoogle Scholar
76.
Lewis  CMLevinson  DFWise  LHDeLisi  LEStraub  REHovatta  IWilliams  NMSchwab  SGPulver  AEFaraone  SVBrzustowicz  LMKaufmann  CAGarver  DLGurling  HMLindholm  ECoon  HMoises  HWByerley  WShaw  SHMesen  ASherrington  RO’Neill  FAWalsh  DKendler  KSEkelund  JPaunio  TLönnqvist  JPeltonen  LO’Donovan  MCOwen  MJWildenauer  DBMaier  WNestadt  GBlouin  JLAntonarakis  SEMowry  BJSilverman  JMCrowe  RRCloninger  CRTsuang  MTMalaspina  DHarkavy-Friedman  JMSvrakic  DMBassett  ASHolcomb  JKalsi  GMcQuillin  ABrynjolfson  JSigmundsson  TPetursson  HJazin  EZoëga  THelgason  T Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia.  Am J Hum Genet 2003;73 (1) 34- 48PubMedGoogle Scholar
77.
Sklar  PPato  MTKirby  APetryshen  TLMedeiros  HCarvalho  CMacedo  ADourado  ACoelho  IValente  JSoares  MJFerreira  CPLei  MVerner  AHudson  TJMorley  CPKennedy  JLAzevedo  MHLander  EDaly  MJPato  CN Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis.  Mol Psychiatry 2004;9 (2) 213- 218PubMedGoogle Scholar
78.
Herzberg  IJasinska  AGarcia  JJawaheer  DService  SKremeyer  BDuque  CParra  MVVega  JOrtiz  DCarvajal  LPolanco  GRestrepo  GJLópez  CPalacio  CLevinson  MAldana  IMathews  CDavanzo  PMolina  JFournier  EBejarano  JRamírez  MOrtiz  CAAraya  XSabatti  CReus  VMacaya  GBedoya  GOspina  JFreimer  NRuiz-Linares  A Convergent linkage evidence from two Latin-American population isolates supports the presence of a susceptibility locus for bipolar disorder in 5q31-34.  Hum Mol Genet 2006;15 (21) 3146- 3153PubMedGoogle Scholar
79.
Squires  RFLajtha  ASaederup  EPalkovits  M Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses?  Neurochem Res 1993;18 (2) 219- 223PubMedGoogle Scholar
80.
Lewis  DA GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia.  Brain Res Brain Res Rev 2000;31 (2-3) 270- 276PubMedGoogle Scholar
81.
Lewis  DAVolk  DWHashimoto  T Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction.  Psychopharmacology (Berl) 2004;174 (1) 143- 150PubMedGoogle Scholar
82.
Akbarian  SHuntsman  MMKim  JJTafazzoli  APotkin  SGBunney  WE  JrJones  EG GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls.  Cereb Cortex 1995;5 (6) 550- 560PubMedGoogle Scholar
83.
Huntsman  MMTran  BVPotkin  SGBunney  WE  JrJones  EG Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics.  Proc Natl Acad Sci U S A 1998;95 (25) 15066- 15071PubMedGoogle Scholar
84.
Ohnuma  TAugood  SJArai  HMcKenna  PJEmson  PC Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression.  Neuroscience 1999;93 (2) 441- 448PubMedGoogle Scholar
85.
Hashimoto  TVolk  DWEggan  SMMirnics  KPierri  JNSun  ZSampson  ARLewis  DA Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.  J Neurosci 2003;23 (15) 6315- 6326PubMedGoogle Scholar
86.
Choudary  PVMolnar  MEvans  SJTomita  HLi  JZVawter  MPMyers  RMBunney  WE  JrAkil  HWatson  SJJones  EG Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.  Proc Natl Acad Sci U S A 2005;102 (43) 15653- 15658PubMedGoogle Scholar
87.
Torrey  EFBarci  BMWebster  MJBartko  JJMeador-Woodruff  JHKnable  MB Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.  Biol Psychiatry 2005;57 (3) 252- 260PubMedGoogle Scholar
88.
Ishikawa  MMizukami  KIwakiri  MHidaka  SAsada  T Immunohistochemical and immunoblot study of GABAA α1 and β2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.  Neurosci Res 2004;50 (1) 77- 84PubMedGoogle Scholar
89.
Dean  BScarr  EMcLeod  M Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder.  Brain Res Mol Brain Res 2005;138 (2) 145- 155PubMedGoogle Scholar
90.
Kalkman  HOLoetscher  E GAD67: the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis.  J Neural Transm 2003;110 (7) 803- 812PubMedGoogle Scholar
91.
Laeng  PPitts  RLLemire  ALDrabik  CEWeiner  ATang  HThyagarajan  RMallon  BSAltar  CA The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells.  J Neurochem 2004;91 (1) 238- 251PubMedGoogle Scholar
92.
Lee  SHSohn  JWAhn  SCPark  WSHo  WK Li+ enhances GABAergic inputs to granule cells in the rat hippocampal dentate gyrus.  Neuropharmacology 2004;46 (5) 638- 646PubMedGoogle Scholar
93.
Friedman  SDDager  SRParow  AHirashima  FDemopulos  CStoll  ALLyoo  IKDunner  DLRenshaw  PF Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder.  Biol Psychiatry 2004;56 (5) 340- 348PubMedGoogle Scholar
94.
Curtin  FSchulz  P Clonazepam and lorazepam in acute mania: a Bayesian meta-analysis.  J Affect Disord 2004;78 (3) 201- 208PubMedGoogle Scholar
95.
Simon  NMOtto  MWWisniewski  SRFossey  MSagduyu  KFrank  ESachs  GSNierenberg  AAThase  MEPollack  MH Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Am J Psychiatry 2004;161 (12) 2222- 2229PubMedGoogle Scholar
96.
Millar  JKWilson-Annan  JCAnderson  SChristie  STaylor  MSSemple  CADevon  RSClair  DMMuir  WJBlackwood  DHPorteous  DJ Disruption of two novel genes by a translocation co-segregating with schizophrenia.  Hum Mol Genet 2000;9 (9) 1415- 1423PubMedGoogle Scholar
97.
Ekelund  JHovatta  IParker  APaunio  TVarilo  TMartin  RSuhonen  JEllonen  PChan  GSinsheimer  JSSobel  EJuvonen  HArajärvi  RPartonen  TSuvisaari  JLönnqvist  JMeyer  JPeltonen  L Chromosome 1 loci in Finnish schizophrenia families.  Hum Mol Genet 2001;10 (15) 1611- 1617PubMedGoogle Scholar
98.
Ekelund  JHennah  WHiekkalinna  TParker  AMeyer  JLönnqvist  JPeltonen  L Replication of 1q42 linkage in Finnish schizophrenia pedigrees.  Mol Psychiatry 2004;9 (11) 1037- 1041PubMedGoogle Scholar
99.
Hwu  HGLiu  CMFann  CSOu-Yang  WCLee  SF Linkage of schizophrenia with chromosome 1q loci in Taiwanese families.  Mol Psychiatry 2003;8 (4) 445- 452PubMedGoogle Scholar
100.
Hamshere  MLBennett  PWilliams  NSegurado  RCardno  ANorton  NLambert  DWilliams  HKirov  GCorvin  AHolmans  PJones  LJones  IGill  MO’Donovan  MCOwen  MJCraddock  N Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13.  Arch Gen Psychiatry 2005;62 (10) 1081- 1088PubMedGoogle Scholar
101.
Curtis  DKalsi  GBrynjolfsson  JMcInnis  M Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23-q24, and suggests the presence of additional loci on 1p and 1q.  Psychiatr Genet 2003;13 (2) 77- 84PubMedGoogle Scholar
102.
Detera-Wadleigh  SDBadner  JABerrettini  WHYoshikawa  TGoldin  LRTurner  GRollins  DYMoses  TSanders  ARKarkera  JDEsterling  LEZeng  JFerraro  TNGuroff  JJKazuba  DMaxwell  MENurnberger  JI  JrGershon  ES A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2.  Proc Natl Acad Sci U S A 1999;96 (10) 5604- 5609PubMedGoogle Scholar
103.
Macgregor  SVisscher  PMKnott  SAThomson  PPorteous  DJMillar  JKDevon  RSBlackwood  DMuir  WJ A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42.  Mol Psychiatry 2004;9 (12) 1083- 1090PubMedGoogle Scholar
104.
Hennah  WVarilo  TKestilä  MPaunio  TArajärvi  RHaukka  JParker  AMartin  RLevitzky  SPartonen  TMeyer  JLönnqvist  JPeltonen  LEkelund  J Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects.  Hum Mol Genet 2003;12 (23) 3151- 3159PubMedGoogle Scholar
105.
Mutsuddi  MMorris  DWWaggoner  SGDaly  MJScolnick  EMSklar  P Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia.  Am J Hum Genet 2006;79 (5) 903- 909PubMedGoogle Scholar
106.
Florez  JCBurtt  Nde Bakker  PIAlmgren  PTuomi  THolmkvist  JGaudet  DHudson  TJSchaffner  SFDaly  MJHirschhorn  JNGroop  LAltshuler  D Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.  Diabetes 2004;53 (5) 1360- 1368PubMedGoogle Scholar
107.
Alda  M Pharmacogenetics of lithium response in bipolar disorder.  J Psychiatry Neurosci 1999;24 (2) 154- 158PubMedGoogle Scholar
108.
Grof  PDuffy  ACavazzoni  PGrof  EGarnham  JMacDougall  MO’Donovan  CAlda  M Is response to prophylactic lithium a familial trait?  J Clin Psychiatry 2002;63 (10) 942- 947PubMedGoogle Scholar
109.
Sautter  FGarver  D Familial differences in lithium responsive versus lithium nonresponsive psychoses.  J Psychiatr Res 1985;19 (1) 1- 8PubMedGoogle Scholar
110.
Emamian  ESHall  DBirnbaum  MJKarayiorgou  MGogos  JA Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia.  Nat Genet 2004;36 (2) 131- 137PubMedGoogle Scholar
111.
Jacinto  EFacchinetti  VLiu  DSoto  NWei  SJung  SYHuang  QQin  JSu  B SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.  Cell 2006;127 (1) 125- 137PubMedGoogle Scholar
112.
Baum  AEAkula  NCabanero  MCardona  ICorona  WKlemens  BSchulze  TGCichon  SRietschel  MNöthen  MMGeorgi  ASchumacher  JSchwarz  MAbou Jamra  RHöfels  SPropping  PSatagopan  JDetera-Wadleigh  SDHardy  JMcMahon  FJ A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder [published online ahead of print May 8, 2007].  Mol Psychiatry 2007;10.1038/sj.mp.4002012Google Scholar
113.
Cassidy  FRoche  SClaffey  EMcKeon  P First family-based test for association of neuregulin with bipolar affective disorder.  Mol Psychiatry 2006;11 (8) 706- 707PubMedGoogle Scholar
114.
Breen  GPrata  DOsborne  SMunro  JSinclair  MLi  TStaddon  SDempster  DSainz  RArroyo  BKerwin  RWSt Clair  DCollier  D Association of the dysbindin gene with bipolar affective disorder.  Am J Psychiatry 2006;163 (9) 1636- 1638PubMedGoogle Scholar
115.
Raybould  RGreen  EKMacGregor  SGordon-Smith  KHeron  JHyde  SCaesar  SNikolov  IWilliams  NJones  LO’Donovan  MCOwen  MJJones  IKirov  GCraddock  N Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1).  Biol Psychiatry 2005;57 (7) 696- 701PubMedGoogle Scholar
116.
Sklar  PGabriel  SBMcInnis  MGBennett  PLim  YMTsan  GSchaffner  SKirov  GJones  IOwen  MCraddock  NDePaulo  JRLander  ES Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus.  Mol Psychiatry 2002;7 (6) 579- 593PubMedGoogle Scholar
117.
Neves-Pereira  MMundo  EMuglia  PKing  NMacciardi  FKennedy  JL The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study.  Am J Hum Genet 2002;71 (3) 651- 655PubMedGoogle Scholar
118.
Furlong  RAHo  LWalsh  CRubinsztein  JSJain  SPaykel  ESEaston  DFRubinsztein  DC Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders.  Am J Med Genet 1998;81 (1) 58- 63PubMedGoogle Scholar
119.
Mynett-Johnson  LKealey  CClaffey  ECurtis  DBouchier-Hayes  LPowell  CMcKeon  P Multimarker haplotypes within the serotonin transporter gene suggest evidence of an association with bipolar disorder.  Am J Med Genet 2000;96 (6) 845- 849PubMedGoogle Scholar
120.
Lasky-Su  JAFaraone  SVGlatt  SJTsuang  MT Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders.  Am J Med Genet B Neuropsychiatr Genet 2005;133 (1) 110- 115PubMedGoogle Scholar
121.
Greenwood  TASchork  NJEskin  EKelsoe  JR Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples.  Mol Psychiatry 2006;11 (2) 125- 133PubMedGoogle Scholar
Original Article
January 2008

Family-Based Association Study of Lithium-Related and Other Candidate Genes in Bipolar Disorder

Author Affiliations

Author Affiliations: Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (Drs Perlis, Purcell, Petryshen, Fan, and Sklar and Mr Fagerness), and Bipolar Clinical and Research Program (Drs Perlis, Purcell, Petryshen, Fan, and Sklar and Messrs Fagerness and Kirby), Massachusetts General Hospital and Harvard Medical School, Boston; and Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (Drs Petryshen, Fan, and Sklar).

Arch Gen Psychiatry. 2008;65(1):53-61. doi:10.1001/archgenpsychiatry.2007.15
Abstract

Context  Association studies in bipolar disorder have been focused on a relatively narrow pool of candidate genes based on a limited understanding of the underlying pathophysiologic features. Recent developments suggest that a broader pool of genes may be associated with this disorder.

Objective  To examine the association between genes related to the lithium mechanism of action, as well as other positional and functional candidates, with bipolar I disorder.

Design  We examined a dense set of haplotype-tagging single-nucleotide polymorphisms using a gene-based test of association.

Participants  Three hundred seventy-nine parent-affected offspring trios.

Results  No genes specifically chosen to probe the action of lithium were associated with bipolar disorder. However, gene-based analysis of sialyltransferase 4A (SIAT4A), tachykinin receptor 1 (TACR1), and γ-aminobutyric acidA β2 receptor subunit (GABRB2) yielded evidence of association (empirical P value, <.005). Among 3 genes associated with schizophrenia or bipolar disorder in multiple previous studies, including dysbindin (DTNBP1), neuregulin (NRG1), and disrupted-in-schizophrenia 1 (DISC1), only DISC1 showed evidence of association in this cohort. In a secondary analysis of these 6 genes among parent-proband trios with a history of psychosis, evidence of the association with SIAT4A was strengthened.

Conclusions  These results suggest novel candidates and 1 gene (DISC1) previously associated with schizophrenia that merit further study in bipolar disorder. However, polymorphisms in major lithium-signaling genes do not appear to contribute substantially to bipolar liability.

Bipolar disorder is common and disabling.1-3 Although environmental factors influence disease course,4 family and twin studies suggest it is highly heritable.5,6 A recent meta-analysis identified regions on chromosomes 6q and 8q with evidence of linkage to bipolar disorder, although individual linkage studies have generally yielded inconsistent results.7 Likewise, although multiple candidate genes have been reported to be associated with bipolar disorder, these genes frequently do not show evidence of association in independent cohorts.

A primary obstacle to further candidate gene–based studies is the limited understanding of the pathophysiologic features of bipolar disorder at a cellular or molecular level, which hinders the selection of candidate genes with adequate prior probability of association. Some insight into the pathophysiologic features may come from consideration of the mechanism of action of an effective therapy for bipolar disorder such as lithium carbonate, which remains a first-line treatment.8-10 By analogy, genes involved in the mechanism of action of hypoglycemic agents in diabetes mellitus have been shown to confer risk for that disorder.11-13 Likewise, in major depressive disorder, the serotonergic mechanism of action of many antidepressants focused attention on the serotonin transporter gene, which was subsequently associated with risk for major depressive disorder.14 As indirect support of this approach in bipolar disorder, lithium treatment responsiveness has been associated with greater family loading for bipolar disorder,15,16 although not all studies observe this effect.17-19 Thus, genes associated with the lithium mechanism of action represent candidates for association with bipolar disorder itself.

Although lithium's mechanisms of therapeutic action are not fully understood, the enzymatic pathways with which it interacts are increasingly well studied. Lithium interacts with 2 major cell-signaling pathways. In the first pathway, lithium inhibits recycling of inositol at multiple steps, thereby altering inositol 1,4,5-triphosphate– dependent second-messenger signaling.20-22 In the second pathway, lithium acts as a selective inhibitor of glycogen synthesis kinase 3β (GSK3B),22-25 influencing several downstream pathways including activation of the Wnt-signaling pathway.26-30 Perhaps most compellingly, mice that are haploinsufficient for GSK3B display behaviors similar to those of mice receiving long-term treatment with lithium.29 The GSK3B pathway has also been postulated to contribute to the observed neuroprotective effects of lithium.31 The 2 hypotheses are not mutually exclusive; for example, both pathways appear to converge on the serine/threonine kinase Akt-1 region.22 Genes in either of these 2 signaling pathways are therefore candidates for association with the risk for bipolar disorder.

Three other lines of evidence implicate additional candidate genes in bipolar disorder. First, messenger RNA expression studies or similar paradigms have identified additional genes32-34 not belonging to 1 of the 2 pathways noted. Some of these are differentially regulated by lithium or by other traditional mood stabilizers, differentially expressed in the brains of patients with bipolar disorder (hereinafter referred to as bipolar patients), or yield proteins that are otherwise implicated in the mechanism of action of mood stabilizers. For example, genes related to oligodendrocyte differentiation or function exhibited differential expression in a postmortem study of bipolar patients,33 whereas the traditional mood stabilizer valproate sodium appears to influence histone deacetylation.34 Second, a small number of genes known to be expressed in the central nervous system lie under bipolar linkage peaks on 6q and 8q.7 Finally, a small number of genes have been shown in multiple studies to be associated with schizophrenia, including disrupted-in-schizophrenia 1 (DISC1),35,36 neuregulin (NRG1),37-39 and dysbindin (DTNBP1),40-44 and an overlap in liability with bipolar disorder has been suggested.39 Several other genes have also been associated with the risk of, or the pathways implicated in, schizophrenia or affective illness.14,45,46

Therefore, to identify genes associated with bipolar disorder liability, we conducted a family-based association study examining a select panel of candidate genes based on these hypotheses.

Methods
Sample description

Patient samples were selected from the National Institute of Mental Health [NIMH] Genetics Collaborative Study of Bipolar Disorder waves 1 through 4, details of which have been previously reported.47 In brief, that study ascertained subjects in the following 2 ways: (1) first-degree probands with bipolar I disorder (BPI) and at least 1 first-degree relative with BPI or schizoaffective disorder, bipolar type (SAB), and (2) 2 first- or second-degree relatives with BPI or SAB, with at least 2 additional members of the extended family with BPI, SAB, bipolar II disorder (BPII), or recurrent major depressive disorder. In either approach, subjects with 2 parents with BPI or SAB were excluded. Diagnosis was determined using the Diagnostic Interview for Genetic Studies48 with best-estimate diagnosis assigned by 2 independent psychiatrists based on the Diagnostic Interview for Genetic Studies result, family informants, and review of medical records.47

For the present study, we initially identified all complete affected parent-proband trios for whom DNA was available from the Rutgers University repository (http://www.nimhgenetics.org) using a broad definition that included BPI, BPII, or SAB probands; from these, BPI parent-proband trios were selected for primary analyses, based on the most current phenotypic data available to us (NIMH release 3.05 [http://www.nimhgenetics.org]).

Gene and single-nucleotide polymorphism selection

Genes were selected from the following 3 broad categories based on a review of the literature: (1) implication in lithium signaling (n = 91, including 17 related primarily to inositol 1,4,5-triphosphate, 39 related primarily to GSK3B/Wnt signaling, and 35 others implicated by messenger RNA expression data or related approaches); (2) location under a bipolar disorder linkage peak (n = 10); and (3) previous evidence of association with or involvement in schizophrenia or mood disorders (n = 23, including 3 with replicated association in schizophrenia [DISC1, DTNBP1, and NRG1]). A fourth gene previously associated with schizophrenia, G72, was omitted because it had previously been studied in the NIMH cohort.49 In all, 124 genes spanning 11.8 megabases were selected with this approach (eTable 1).

The single-nucleotide polymorphisms (SNPs) within the candidate genes were selected using a haplotype-tagging (or locus variation–tagging) approach. This approach identifies a set of nonredundant “tag” SNPs that capture common genetic variation in the designated region, allowing a more efficient screen than typing all SNPs in a region. The tagging approach has been shown to be efficient and powerful for association studies.50 In selecting tags, priority was given to known or putative functional SNPs, including exonic SNPs or promoter-region SNPs. First, genotypic data for all SNPs in regions encompassing each gene (including 10-kilobase [kb] 5′ and 10-kb 3′ flanking regions) were obtained from the International HapMap Project phase Ic public database (http://www.hapmap.org/). The bioinformatics software TAMAL51 was also used to identify putative functional SNPs in the same gene regions. The SNPs selected from the HapMap and TAMAL databases were submitted to the program Tagger50 to identify the subset to be used for tagging; parameters included a minimum coefficient of determination (r2) threshold of 0.8 and minimum minor allele frequency of 0.05. The SNPs selected using TAMAL for their functional importance were forced into the final SNP set, regardless of their tagging performance. For 2 genes previously reported to be associated with schizophrenia, NRG1 and the ionotropic/kainate glutamate receptor 2 (GRIK2), the tagging approach was not applied because the large gene size and low linkage disequilibrium would have required a prohibitive number of SNPs to be genotyped; rather, SNPs were selected on the basis of those previously showing evidence of association with schizophrenia.

Genotyping was performed using a gene expression platform (Illumina BeadArray at the Center for Genotyping and Analysis of the Broad Institute52). In total, 1536 SNPs were genotyped in 1302 samples; 1 control sample from the Centre d’Étude du Polymorphisme Humain set was also included on each 96-well plate. After data cleaning (eTable 2), the final sample included 1261 autosomal SNPs genotyped in 829 individuals from 225 families and yielded 379 affected-offspring parent-proband trios. Resulting genotype success rates for these SNPs were in excess of 99%, and mean genotyping rates were greater than 99% for all individuals (minimum, 94%). For the analyzable duplicate samples, interplate concordance was greater than 99.9% and concordance with published Centre d’Étude du Polymorphisme Humain genotypes was 100% (n = 1025 genotypes in total).

To determine the informativeness of the resulting SNPs for the gene panel, Tagger was rerun with the same parameters but including only the passing SNPs. Although these SNPs were identified using HapMap phase Ic data, the informativeness for the 1180 HapMap SNPs meeting quality control criteria was estimated using phase II data, released subsequent to our initial genotyping assay development (eTable 1). Of a total of 7762 HapMap phase II SNPs in the tagged genes, 77% were captured with r2 ≥ 0.8, with mean r2 = 0.83. For the individual genes, 67 were captured with mean r2 ≥ 0.8 and 108 with mean r2 ≥ 0.5, suggesting that the tag SNPs adequately captured the common variation in these genes.

Analysis

As suggested by Neale and Sham,53 we considered the natural unit of analysis to be the single gene rather than the single SNP or haplotype. We therefore used a gene-based framework to aggregate the single SNP statistics and correct for multiple testing up to the level of the individual gene. Specifically, primary analysis screened for association among the 379 BPI trios using the set-based test implemented in the PLINK association analysis toolset (http://pngu.mgh.harvard.edu/~purcell/plink/) for all 124 genes.54 This test is similar to that described and shown to be highly efficient by Ott and Hoh55: it computes the test statistic (χ2 from the single-SNP transmission disequilibrium test in this case) for each individual SNP within a gene, then calculates the average test statistic for the best single SNP per region, for the best 2 SNPs per region, for the best 3 SNPs per region, and so forth.54 The significance of these set statistics is then estimated by permutation, which allows a determination of genewise significance, allowing for correlation between SNPs and tests while controlling for type I error at the single-gene level. For these analyses, the significance of the SNP combinations including 1 to 5 SNPs were estimated, using 50 000 permutations. Although it would be possible to sum over all SNPs within 1 gene, rather than the best 5, this approach would tend to obscure associations if only 1 or a few SNPs show evidence of association, as we would expect. The transmission disequilibrium test is problematic as a test for association in multiplex families in the presence of linkage56,57 because transmissions to affected offspring are not independent. However, the determination of P values by permutation allows transmissions to multiple affected siblings to be analyzed while taking into account this relatedness.

We chose to correct for testing multiple genes for association, within the constraints of available power, by setting a more stringent permuted genewise P < .005 as the threshold for significance in the gene-based test. This value was selected according to examination of thresholds for 70% power to detect association in the single-SNP transmission disequilibrium test. Anticipating the need for replication of any suggestive finding, and recognizing the possibility of more than 1 true-positive association given the nature of the hypotheses under study, we elected not to choose a more stringent threshold. Tests of DISC1, NRG1, and DTNBP1, which we considered to have greater prior probability of association based on previous reports, used a less stringent threshold for statistical significance (P < .05) than the other genes.

For any gene with evidence of association in the gene-based test, we then examined 3-marker haplotypes within the gene using a sliding-window approach for illustrative purposes.58 For graphical illustration of SNP location within a subset of genes, the Haploview (http://www.broad.mit.edu/mpg/haploview/)59 and Locusview 2.0 (http://www.broad.mit.edu/mpg/locusview/) packages were used.

Finally, given emerging evidence of overlap between bipolar disorder and primary psychotic disorders, we performed a follow-up analysis of only those genes with evidence of association with BPI in our primary analysis, as well as the 3 replication genes (DTNBP1, NRG1, and DISC1). For this analysis, affection status was determined by psychosis (SAB or BPI with psychotic features in the proband) rather than BPI diagnosis, yielding 294 affected trios drawn from the larger cohort.

To aid in the interpretation of results, the power for single-marker analyses was estimated using the Genetic Power Calculator60 for 379 trios assuming a discrete trait analyzed by means of the transmission disequilibrium test. For α = .005 and an additive model with a genotypic risk ratio of 1.5, power was at least 75% for minor allele frequency of 25% or greater and at least 70% for minor allele frequency of 20% or greater. For α = .05, as applied to the replication genes, and an additive model with a genotypic risk ratio of 1.4, power was at least 75% for a minor allele frequency of 20% or greater and at least 70% for a minor allele frequency of 15% or greater. These estimates do not consider the nonindependence of trios in multiplex families, although comparison of asymptotic and permuted P values suggested little influence of nonindependence here. True power is likely to be substantially greater because of the use of the set-based test.

Results

Three genes (SIAT4A, TACR1, and GABRB2) yielded permuted P < .005 in gene-based association tests, corrected for all tests within the gene; the 5 SNPs in each gene that contribute to this association are listed in the Table (eTable 3 shows all gene-based results). Likewise, the 5 SNPs that contribute to the gene-based tests for 3 replication genes (DISC1, DTNBP1, and NRG1) are listed in the Table; only DISC1 yielded P < .05.

The association between BPI and SIAT4A, TACR1, GABRB2, and DISC1 was further characterized using 3-marker sliding-window haplotypes because the set-based test does not localize association within a gene (Figure). In GABRB2, multiple haplotypes were differentially transmitted to bipolar offspring; the strongest association was observed with an overtransmitted 3-marker haplotype of rs6556547, rs967771, and rs10515828 (transmitted to untransmitted [T:NT] ratio, 203:139; χ2 = 11.98; P < .001). In SIAT4A, the strongest association was observed with a 3-marker haplotype of rs2075823, rs6986303, and rs9643297, which was undertransmitted (T:NT ratio, 76.7:118.1 [these numbers are not integers because of ambiguous phasing]; χ2 = 8.81; P = .003). In TACR1, a 3-marker combination of rs3771809, rs6546952, and rs3771811 was undertransmitted (T:NT ratio, 190.5:249.7; χ2 = 7.96; P = .005). Finally, for DISC1, an overtransmitted haplotype of rs10495308, rs2793091, and rs2793085 (T:NT ratio, 98:65; χ2 = 6.67; P = .01) showed the greatest evidence of association. (To aid in the comparison of these results with previous studies and to facilitate future ones, the odds ratios and P values [in terms of −log (P)] from single-SNP tests are also presented in the eFigure and supplemental eTable 4). Notably, the gene-based test explicitly considers the single-SNP results (ie, single-SNP transmission disequilibrium test; see SNP 1 in the Table) and thus does not require further correction for these single-SNP tests.

Because of the reported overlap in schizophrenia and bipolar liability,39 we performed a secondary analysis examining gene-based associations using the lifetime presence or absence of psychotic symptoms, regardless of diagnosis, as the phenotype. This analysis included 294 affected-offspring trios drawn from the larger cohort, including BPI and SAB offspring. For SIAT4A, the gene-based test yielded P < 4 × 10−5; for the other genes, results were essentially unchanged from the primary analysis of the bipolar phenotype (eTable 5). Three-marker sliding-window results for this gene are shown in the Figure (top half of SIAT4A panel [A]).

Comment

In this large-scale family-based association study of bipolar disorder, we identified evidence of association using a gene-based test for 3 genes from a panel of 124. One gene, SIAT4A, is in a region of chromosome 8 implicated in a meta-analysis of linkage data in bipolar disorder7; a second, TACR1, was identified in an expression study of bipolar disorder32; and a third, GABRB2, was previously implicated in 2 association studies of schizophrenia.61,62 None of the genes related to lithium signaling demonstrated evidence of association.

Sialyltransferase 4a

Sialyltransferase 4A (Online Mendelian Inheritance in Man *607187), also referred to as ST3 β-galactoside α-2,3-sialyltransferase 1 (ST3GAL1), codes for one of a family of proteins that transfer sialic acid to glycoprotein or glycolipid carbohydrate groups.63 It was included herein because of its location under a bipolar disorder linkage peak on 8q identified in a pooled analysis of linkage data7 and prioritized among positional candidates because nerve cell adhesion molecules, key to cell-cell interaction in the developing brain,64 are modified by the addition of polysialic acid by sialyltransferases. Changes in the expression of nerve cell adhesion molecule 1 have been noted in the hippocampus in postmortem studies of bipolar patients.65 The gene coding for another glycosyltransferase, a mannosyltransferase at 11q23, was shown to be disrupted by a translocation break point cosegregating with bipolar disorder in one family.66 Finally, a recent report described an association between another sialyltransferase, SIAT8B, and schizophrenia risk.67 Sialyltransferase 4A is known to be expressed in brain and many other tissues68 but is otherwise not well characterized. Our finding that the association is strongest among psychotic patients, particularly in the context of the SIAT8B association, suggests that SIAT4A should be studied among schizophrenia cohorts as well.

Tachykinin receptor 1

Substance P, alternately referred to as neurokinin and tachykinin, and its primary receptor tachykinin receptor 1 (TACR1) (Online Mendelian Inheritance in Man *162323) have previously been associated with pain and more broadly with stress response, as well as motivation and reward/aversion circuits.69 Studies in mood disorders are limited, but a neuropathology study found differences in the expression pattern of TACR1 among unipolar but not bipolar subjects.70 Substance P antagonists are also known to have antidepressant and anxiolytic effects in animal models,71,72 although human studies remain inconclusive.73

Tachykinin receptor 1 itself was initially reported to be one of a subset of genes regulated by lithium in cultured lymphoblastoid cells.74 After an examination of messenger RNA expression data suggested the gene coding for substance P as a high-priority target in bipolar disorder,32 a small population-based association study failed to find an association in 20 SNPs in 4 genes related to substance P with affective illness, although coverage of TACR1 itself was limited and the cohort was quite small.75 Otherwise, to our knowledge, this gene has not been studied in mood disorder cohorts, and no studies have examined the effects of substance P in bipolar disorder itself.

GABAA β2 RECEPTOR

The γ-aminobutyric acidA (GABAA) β2 receptor subunit gene (Online Mendelian Inheritance in Man *600232) is located in a region of chromosome 5q identified in a previous meta-analysis76 of linkage data in schizophrenia; linkage has also been reported in studies of families of Portuguese descent77 and those of Colombian and Costa Rican descent.78 One study62 reported the association of GABRB2 with schizophrenia in a cohort of Chinese patients with schizophrenia, and a subsequent family-based study61 identified a single overtransmitted SNP (rs168697) in GABRB2 in 2 independent cohorts, 1 of Portuguese and 1 of German descent. Our result does not directly replicate either of the schizophrenia findings. Of the SNPs associated in the Chinese cohort62 (rs1816071, rs194072, rs252944, and rs187269), none was associated in the present study. For rs194072 and rs252944, the T:NT ratio was 101:97 (P > .5); for rs187269, 154:158 (P > .5). Although rs1816071 was not directly genotyped, a 2-marker haplotype (rs1644454 and rs187269) served as a proxy with r2 > 0.6; again, no significant evidence of association (for all comparisons, P > .5) was identified. The single SNP associated in the Portuguese and German cohorts61 was not successfully genotyped in our study, nor could a tagging SNP be identified in HapMap.

Although abnormalities in GABAergic neurotransmission have been best described in schizophrenia,79-85 differences have also been reported in affective illness. Changes in the expression of multiple GABA receptor subunits were noted in a cohort of individuals with major depressive disorder,86 particularly in suicides; similar changes were noted in another postmortem study.87 Increased immunolabeling of GABAA β2/3 subunits was increased in bipolar patients compared with control subjects.88 Finally, another BPI postmortem study found a change in the GABAA receptor subunit composition in the hippocampus, with an increase in the GABA α5 receptor subunit compared with controls.89

Pharmacotherapies with known efficacy in bipolar disorder appear to influence GABAergic neuron development or GABAergic neurotransmission. Antipsychotics that antagonize the dopamine D2 receptor lead to up-regulation of glutamic acid decarboxylase 67, the rate-limiting step in GABA synthesis.90 Valproic acid stimulates GABAergic neurogenesis in rat forebrain.91 In rat hippocampus, lithium treatment appears to enhance the firing of GABAergic interneurons.92 In bipolar patients, lithium (although not valproate) treatment was associated with decreases in a measure of glutamate and GABA levels on magnetic resonance spectroscopy; elevated levels of this measure had been observed in bipolar patients not receiving medication.93

Finally, 2 sets of clinical observations in bipolar disorder implicate GABAergic neurotransmission. First, drugs such as benzodiazepines that act primarily on the GABA receptor are widely used adjunctively in mania, and a recent meta-analysis94 suggests efficacy for at least 1 of them. Second, studies of bipolar patients indicate extremely high rates of anxiety comorbidity.95

Confining our analysis to individuals with psychotic disorders yielded minimal change in the evidence of association for GABRB2. This suggests that reports of association in schizophrenia and bipolar disorder may not simply indicate that this gene is a psychosis risk gene per se.

Genes with prior replicated evidence of association with schizophrenia

The DISC region on 1q42.1 was first identified in a Scottish family in which a chromosome break point translocation segregated with mood and psychotic disorders.96 Multiple positive linkage studies in schizophrenia or schizoaffective disorder97-100 and bipolar disorder101-103 followed. The SNPs in the DISC1 region have since been associated with such disorders, and particularly psychosis, in multiple cohorts.35,36,97,98,104 Unfortunately, the extent to which the haplotypes examined in these studies overlap has not been fully defined35 (J.Fan, unpublished data, May 23, 2007). As has been noted, studies reported as replication often assess different markers or report different risk haplotypes.105 Although we did not assess all SNPs included in previous DISC1 publications, of the 37 SNPs showing prior evidence of association across published studies, 20 were directly genotyped or have proxies with r2 ≥ 0.8 in our cohort. Only 1 SNP, rs1015101 (associated with schizoaffective disorder in the work of Hodgkinson and colleagues36) was nominally associated in our cohort, with P = .04. This SNP also tags 1 SNP of a 4-marker haplotype (block 4; rs9432024-rs999710-rs11122359-rs821723) associated with bipolar disorder but not schizophrenia in the same study.36 Two of the other SNPs in this 4-marker block are tagged with r2 ≥ 0.8 and show no evidence of association, while a third is not well-captured with our SNPs. Two additional SNPs in our sample that appear to lie within or adjacent to this block, rs11577215 and rs10864702, also show modest evidence of association (nominal P = .01 and P = .02, respectively). Thus, although our results cannot be construed as replicating the earlier finding, they are at least consistent with it. Our coverage of other haplotypes associated with bipolar disorder was less complete, but there was no evidence of an association with single SNPs in these regions. Among the SNPs in the region 2 and 3 blocks of Thomson and colleagues,35 for example, none was associated with P < .1 in our study.

In disorders such as diabetes mellitus, targets of drugs known to be effective as treatments have proved to be risk genes for the disorder itself.106 Notably, then, none of the genes associated with lithium signaling showed significant evidence of association, despite extensive support for the efficacy of lithium in the treatment of bipolar disorder8—suggestive evidence that lithium responsiveness may be associated with familial bipolar disorder107-109 and isolated positive studies of lithium-related candidate genes.110 This may simply indicate that the primary genes involved in lithium's mechanism of action are not those that contribute to liability for bipolar disorder (ie, are dysregulated or dysfunctional in bipolar disorder); instead, lithium may act upstream or downstream of these genes. Alternatively, although our pathway-based approach was as comprehensive as possible based on review of the literature in 2006, other known or unknown genes in these pathways that were not investigated may contribute risk; for example, understanding of GSK3B signaling continues to evolve rapidly.111 Indeed, a very recent report described association between SNPs in diacylglycerol kinase-eta (DGKH) and bipolar disorder.112 The diacylglycerol kinases play a role in phosphatidylinositol signaling but were not included in the present study becauseb of space constraints. We identified no evidence of association for upstream or downstream genes in that pathway. Finally, although the SNP tagging approach was generally informative for most genes, we cannot exclude the possibility that rarer variation in these genes, or SNPs that were not adequately tagged, are those that confer bipolar risk.

We were unable to detect any significant evidence of association for 2 other genes implicated first in schizophrenia and later as bipolar candidates, NRG135,39,113 and DTNBP1,114 in the gene-based test. In DTNBP1, we directly genotyped or captured by tagging (r2 = 1) 8 of the 11 SNPs with evidence of association in schizophrenia, including all of the haplotype-tagging SNPs identified by Mutsuddi et al.105 In this our results are consistent with negative results from other groups.105,115 We also did not detect an association with the set-based test for other genes previously implicated in bipolar disorder, including brain-derived neurotrophic factor (BDNF), the dopamine transporter (SLC6A3), and the serotonin transporter (SLC6A4).116-121

We note 2 primary limitations in this study. First, although it represents one of the larger reported cohorts of bipolar patients, the power to detect moderate effects is still only fair; thus, the possibility of type II error must be considered. Second, all of the reported associations will require replication because, even where the genes implicated overlap with previous reports, the specific SNPs or haplotypes conferring risk apparently do not. Nonetheless, if replicated, these genes may represent novel targets for the development of treatments and diagnostic tools in bipolar disorder.

Correspondence: Pamela Sklar, MD, PhD, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114 (sklar@chgr.mgh.harvard.edu).

Submitted for Publication: February 13, 2007; final revision received July 20, 2007; accepted July 24, 2007.

Financial Disclosure: None reported.

Funding/Support: This study was supported by grants MH062137 (Dr Sklar) and MH067060 (Dr Perlis) from the National Institute of Mental Health and by Independent Investigator (Dr Sklar) and Sidney R. Baer Jr Foundation (Dr Sklar) awards from NARSAD.

References
1.
Kessler  RCChiu  WTDemler  OMerikangas  KRWalters  EE Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.  Arch Gen Psychiatry 2005;62 (6) 617- 627[published correction appears in Arch Gen Psychiatry. 2005;62(7):709].PubMedGoogle Scholar
2.
Mitchell  PBSlade  TAndrews  G Twelve-month prevalence and disability of DSM-IV bipolar disorder in an Australian general population survey.  Psychol Med 2004;34 (5) 777- 785PubMedGoogle Scholar
3.
Altshuler  LLPost  RMBlack  DOKeck  PE  JrNolen  WAFrye  MASuppes  TGrunze  HKupka  RWLeverich  GSMcElroy  SLWalden  JMintz  J Subsyndromal depressive symptoms are associated with functional impairment in patients with bipolar disorder: results of a large, multisite study.  J Clin Psychiatry 2006;67 (10) 1551- 1560PubMedGoogle Scholar
4.
Hammen  CGitlin  M Stress reactivity in bipolar patients and its relation to prior history of disorder.  Am J Psychiatry 1997;154 (6) 856- 857PubMedGoogle Scholar
5.
Gershon  ESHamovit  JGuroff  JJDibble  ELeckman  JFSceery  WTargum  SDNurnberger  JI  JrGoldin  LRBunney  WE  Jr A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands.  Arch Gen Psychiatry 1982;39 (10) 1157- 1167PubMedGoogle Scholar
6.
Cardno  AGMarshall  EJCoid  BMacdonald  AMRibchester  TRDavies  NJVenturi  PJones  LALewis  SWSham  PCGottesman  IIFarmer  AEMcGuffin  PReveley  AMMurray  RM Heritability estimates for psychotic disorders: the Maudsley twin psychosis series.  Arch Gen Psychiatry 1999;56 (2) 162- 168PubMedGoogle Scholar
7.
McQueen  MBDevlin  BFaraone  SVNimgaonkar  VLSklar  PSmoller  JWAbou Jamra  RAlbus  MBacanu  SABaron  MBarrett  TBBerrettini  WBlacker  DByerley  WCichon  SCoryell  WCraddock  NDaly  MJDepaulo  JREdenberg  HJForoud  TGill  MGilliam  TCHamshere  MJones  IJones  LJuo  SHKelsoe  JRLambert  DLange  CLerer  BLiu  JMaier  WMackinnon  JDMcInnis  MGMcMahon  FJMurphy  DLNothen  MMNurnberger  JIPato  CNPato  MTPotash  JBPropping  PPulver  AERice  JPRietschel  MScheftner  WSchumacher  JSegurado  RVan Steen  KXie  WZandi  PPLaird  NM Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q.  Am J Hum Genet 2005;77 (4) 582- 595PubMedGoogle Scholar
8.
Hirschfeld  RABowden  CLGitlin  MJKeck  PEPerlis  RHSuppes  TThase  MEWagner  KD Practice guideline for the treatment of patients with bipolar disorder (revision).  Am J Psychiatry 2002;159 (4) ((suppl)) 1- 50Google Scholar
9.
Perlis  RHKeck  PE The Texas implementation of medication algorithms update for treatment of bipolar I disorder.  J Clin Psychiatry 2005;66 (7) 818- 820PubMedGoogle Scholar
10.
Suppes  TDennehy  EBHirschfeld  RMAltshuler  LLBowden  CLCalabrese  JRCrismon  MLKetter  TASachs  GSSwann  ACTexas Consensus Conference Panel on Medication Treatment of Bipolar Disorder, The Texas implementation of medication algorithms: update to the algorithms for treatment of bipolar I disorder.  J Clin Psychiatry 2005;66 (7) 870- 886PubMedGoogle Scholar
11.
Altshuler  DHirschhorn  JNKlannemark  MLindgren  CMVohl  MCNemesh  JLane  CRSchaffner  SFBolk  SBrewer  CTuomi  TGaudet  DHudson  TJDaly  MGroop  LLander  ES The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.  Nat Genet 2000;26 (1) 76- 80PubMedGoogle Scholar
12.
Saxena  RGianniny  LBurtt  NPLyssenko  VGiuducci  CSjögren  MFlorez  JCAlmgren  PIsomaa  BOrho-Melander  MLindblad  UDaly  MJTuomi  THirschhorn  JNArdlie  KGGroop  LCAltshuler  D Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals.  Diabetes 2006;55 (10) 2890- 2895PubMedGoogle Scholar
13.
Holmkvist  JCervin  CLyssenko  VWinckler  WAnevski  DCilio  CAlmgren  PBerglund  GNilsson  PTuomi  TLindgren  CMAltshuler  DGroop  L Common variants in HNF-1 α and risk of type 2 diabetes.  Diabetologia 2006;49 (12) 2882- 2891PubMedGoogle Scholar
14.
Caspi  ASugden  KMoffitt  TETaylor  ACraig  IWHarrington  HMcClay  JMill  JMartin  JBraithwaite  APoulton  R Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.  Science 2003;301 (5631) 386- 389PubMedGoogle Scholar
15.
Mendlewicz  JFieve  RRStallone  F Relationship between the effectiveness of lithium therapy and family history.  Am J Psychiatry 1973;130 (9) 1011- 1013PubMedGoogle Scholar
16.
Grof  PAlda  MGrof  EZvolsky  PWalsh  M Lithium response and genetics of affective disorders.  J Affect Disord 1994;32 (2) 85- 95PubMedGoogle Scholar
17.
Dunner  DLFleiss  JLFieve  RR Lithium carbonate prophylaxis failure.  Br J Psychiatry 1976;12940- 44PubMedGoogle Scholar
18.
Misra  PCBurns  BH “Lithium non-responders” in a lithium clinic.  Acta Psychiatr Scand 1977;55 (1) 32- 40PubMedGoogle Scholar
19.
Engström  CAstrom  MNordqvist-Karlsson  BAdolfsson  RNylander  PO Relationship between prophylactic effect of lithium therapy and family history of affective disorders.  Biol Psychiatry 1997;42 (6) 425- 433PubMedGoogle Scholar
20.
Berridge  MJDownes  CPHanley  MR Neural and developmental actions of lithium: a unifying hypothesis.  Cell 1989;59 (3) 411- 419PubMedGoogle Scholar
21.
Williams  RSEames  MRyves  WJViggars  JHarwood  AJ Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate.  EMBO J 1999;18 (10) 2734- 2745PubMedGoogle Scholar
22.
Chalecka-Franaszek  EChuang  DM Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons.  Proc Natl Acad Sci U S A 1999;96 (15) 8745- 8750PubMedGoogle Scholar
23.
Klein  PSMelton  DA A molecular mechanism for the effect of lithium on development.  Proc Natl Acad Sci U S A 1996;93 (16) 8455- 8459PubMedGoogle Scholar
24.
Stambolic  VRuel  LWoodgett  JR Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells.  Curr Biol 1996;6 (12) 1664- 1668PubMedGoogle Scholar
25.
Lucas  FRSalinas  PC WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons.  Dev Biol 1997;192 (1) 31- 44PubMedGoogle Scholar
26.
Hedgepeth  CMConrad  LJZhang  JHuang  HCLee  VMKlein  PS Activation of the Wnt signaling pathway: a molecular mechanism for lithium action.  Dev Biol 1997;185 (1) 82- 91PubMedGoogle Scholar
27.
Nelson  RWGumbiner  BM A cell-free assay system for β-catenin signaling that recapitulates direct inductive events in the early xenopus laevis embryo.  J Cell Biol 1999;147 (2) 367- 374PubMedGoogle Scholar
28.
Rhoads  ARKarkera  JDDetera-Wadleigh  SD Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway.  Mol Psychiatry 1999;4 (5) 437- 442PubMedGoogle Scholar
29.
O’Brien  WTHarper  ADJové  FWoodgett  JRMaretto  SPiccolo  SKlein  PS Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium.  J Neurosci 2004;24 (30) 6791- 6798PubMedGoogle Scholar
30.
Phiel  CJKlein  PS Molecular targets of lithium action.  Annu Rev Pharmacol Toxicol 2001;41789- 813PubMedGoogle Scholar
31.
Hashimoto  RHough  CNakazawa  TYamamoto  TChuang  DM Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation.  J Neurochem 2002;80 (4) 589- 597PubMedGoogle Scholar
32.
Ogden  CARich  MESchork  NJPaulus  MPGeyer  MALohr  JBKuczenski  RNiculescu  AB Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach.  Mol Psychiatry 2004;9 (11) 1007- 1029PubMedGoogle Scholar
33.
Tkachev  DMimmack  MLRyan  MMWayland  MFreeman  TJones  PBStarkey  MWebster  MJYolken  RHBahn  S Oligodendrocyte dysfunction in schizophrenia and bipolar disorder.  Lancet 2003;362 (9386) 798- 805PubMedGoogle Scholar
34.
Phiel  CJZhang  FHuang  EYGuenther  MGLazar  MAKlein  PS Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.  J Biol Chem 2001;276 (39) 36734- 36741PubMedGoogle Scholar
35.
Thomson  PAWray  NRMillar  JKEvans  KLHellard  SLCondie  AMuir  WJBlackwood  DHPorteous  DJ Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population.  Mol Psychiatry 2005;10 (7) 657- 668PubMedGoogle Scholar
36.
Hodgkinson  CAGoldman  DJaeger  JPersaud  SKane  JMLipsky  RHMalhotra  AK Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder.  Am J Hum Genet 2004;75 (5) 862- 872PubMedGoogle Scholar
37.
Walss-Bass  CRaventos  HMontero  APArmas  RDassori  AContreras  SLiu  WMedina  RLevinson  DFPereira  MLeach  RJAlmasy  LEscamilla  MA Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population.  Acta Psychiatr Scand 2006;113 (4) 314- 321PubMedGoogle Scholar
38.
Petryshen  TLMiddleton  FAKirby  AAldinger  KAPurcell  STahl  ARMorley  CPMcGann  LGentile  KLRockwell  GNMedeiros  HMCarvalho  CMacedo  ADourado  AValente  JFerreira  CPPatterson  NJAzevedo  MHDaly  MJPato  CNPato  MTSklar  P Support for involvement of neuregulin 1 in schizophrenia pathophysiology.  Mol Psychiatry 2005;10 (4) 366- 374PubMedGoogle Scholar
39.
Green  EKRaybould  RMacgregor  SGordon-Smith  KHeron  JHyde  SGrozeva  DHamshere  MWilliams  NOwen  MJO’Donovan  MCJones  LJones  IKirov  GCraddock  N Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder.  Arch Gen Psychiatry 2005;62 (6) 642- 648PubMedGoogle Scholar
40.
Sawamura  NSawa  A Disrupted-in-schizophrenia-1 (DISC1): a key susceptibility factor for major mental illnesses.  Ann N Y Acad Sci 2006;1086126- 133PubMedGoogle Scholar
41.
Tochigi  MZhang  XOhashi  JHibino  HOtowa  TRogers  MKato  TOkazaki  YKato  NTokunaga  KSasaki  T Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population.  Neurosci Res 2006;56 (2) 154- 158PubMedGoogle Scholar
42.
Van Den Bogaert  ASchumacher  JSchulze  TGOtte  ACOhlraun  SKovalenko  SBecker  TFreudenberg  JJönsson  EGMattila-Evenden  MSedvall  GCCzerski  PMKapelski  PHauser  JMaier  WRietschel  MPropping  PNöthen  MMCichon  S The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease.  Am J Hum Genet 2003;73 (6) 1438- 1443PubMedGoogle Scholar
43.
Schwab  SGKnapp  MMondabon  SHallmayer  JBorrmann-Hassenbach  MAlbus  MLerer  BRietschel  MTrixler  MMaier  WWildenauer  DB Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families.  Am J Hum Genet 2003;72 (1) 185- 190PubMedGoogle Scholar
44.
Straub  REJiang  YMacLean  CJMa  YWebb  BTMyakishev  MVHarris-Kerr  CWormley  BSadek  HKadambi  BCesare  AJGibberman  AWang  XO’Neill  FAWalsh  DKendler  KS Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia.  Am J Hum Genet 2002;71 (2) 337- 348PubMedGoogle Scholar
45.
Van Den Bogaert  ASleegers  KDe Zutter  SHeyrman  LNorrback  KFAdolfsson  RVan Broeckhoven  CDel-Favero  J Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population.  Arch Gen Psychiatry 2006;63 (10) 1103- 1110PubMedGoogle Scholar
46.
Zill  PBaghai  TCZwanzger  PSchüle  CEser  DRupprecht  RMöller  HJBondy  BAckenheil  M SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression.  Mol Psychiatry 2004;9 (11) 1030- 1036PubMedGoogle Scholar
47.
Edenberg  HJForoud  TConneally  PMSorbel  JJCarr  KCrose  CWillig  CZhao  JMiller  MBowman  EMayeda  ARau  NLSmiley  CRice  JPGoate  AReich  TStine  OCMcMahon  FDePaulo  JRMeyers  DDetera-Wadleigh  SDGoldin  LRGershon  ESBlehar  MCNurnberger  JI  Jr Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22.  Am J Med Genet 1997;74 (3) 238- 246PubMedGoogle Scholar
48.
Nurnberger  JI  JrBlehar  MCKaufmann  CAYork-Cooler  CSimpson  SGHarkavy-Friedman  JSevere  JBMalaspina  DReich  T Diagnostic interview for genetic studies: rationale, unique features, and training: NIMH Genetics Initiative.  Arch Gen Psychiatry 1994;51 (11) 849- 859, 863-864PubMedGoogle Scholar
49.
Hattori  ELiu  CBadner  JAChristian  SLMaheshwari  MDetera-Wadleigh  SDGibbs  RAGershon  ES Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series.  Am J Hum Genet 2003;72 (5) 1131- 1140PubMedGoogle Scholar
50.
de Bakker  PIYelensky  RPe’er  IGabriel  SBDaly  MJAltshuler  D Efficiency and power in genetic association studies.  Nat Genet 2005;37 (11) 1217- 1223PubMedGoogle Scholar
51.
Hemminger  BMSaelim  BSullivan  PF TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits.  Bioinformatics 2006;22 (5) 626- 627PubMedGoogle Scholar
52.
Gunderson  KLKruglyak  SGraige  MSGarcia  FKermani  BGZhao  CChe  DDickinson  TWickham  EBierle  JDoucet  DMilewski  MYang  RSiegmund  CHaas  JZhou  LOliphant  AFan  JBBarnard  SChee  MS Decoding randomly ordered DNA arrays.  Genome Res 2004;14 (5) 870- 877PubMedGoogle Scholar
53.
Neale  BMSham  PC The future of association studies: gene-based analysis and replication.  Am J Hum Genet 2004;75 (3) 353- 362PubMedGoogle Scholar
54.
Purcell  SNeale  BMTodd-Brown  KThomas  LFerreira  MABender  DMaller  JSklar  Pde Bakker  PIDaly  MJSham  PC PLINK: a toolset for whole genome association and population-based linkage analyses.  Am J Hum Genet 2007;81 (3) 559- 575PubMedGoogle Scholar
55.
Ott  JHoh  J Set association analysis of SNP case-control and microarray data.  J Comput Biol 2003;10 (3-4) 569- 574PubMedGoogle Scholar
56.
Spielman  RSEwens  WJ The TDT and other family-based tests for linkage disequilibrium and association.  Am J Hum Genet 1996;59 (5) 983- 989PubMedGoogle Scholar
57.
Martin  ERKaplan  NLWeir  BS Tests for linkage and association in nuclear families.  Am J Hum Genet 1997;61 (2) 439- 448PubMedGoogle Scholar
58.
Purcell  SDaly  MJSham  PC WHAP: haplotype-based association analysis.  Bioinformatics 2007;23 (2) 255- 256PubMedGoogle Scholar
59.
Barrett  JCFry  BMaller  JDaly  MJ Haploview: analysis and visualization of LD and haplotype maps.  Bioinformatics 2005;21 (2) 263- 265PubMedGoogle Scholar
60.
Purcell  SCherny  SSSham  PC Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits.  Bioinformatics 2003;19 (1) 149- 150PubMedGoogle Scholar
61.
Petryshen  TLMiddleton  FATahl  ARRockwell  GNPurcell  SAldinger  KAKirby  AMorley  CPMcGann  LGentile  KLWaggoner  SGMedeiros  HMCarvalho  CMacedo  AAlbus  MMaier  WTrixler  MEichhammer  PSchwab  SGWildenauer  DBAzevedo  MHPato  MTPato  CNDaly  MJSklar  P Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.  Mol Psychiatry 2005;10 (12) 1074- 1088PubMedGoogle Scholar
62.
Lo  WSLau  CFXuan  ZChan  CFFeng  GYHe  LCao  ZCLiu  HLuan  QMXue  H Association of SNPs and haplotypes in GABAA receptor β2 gene with schizophrenia.  Mol Psychiatry 2004;9 (6) 603- 608PubMedGoogle Scholar
63.
Kitagawa  HPaulson  JC Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups.  J Biol Chem 1994;269 (2) 1394- 1401PubMedGoogle Scholar
64.
Ono  KTomasiewicz  HMagnuson  TRutishauser  U N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid.  Neuron 1994;13 (3) 595- 609PubMedGoogle Scholar
65.
Vawter  MPHoward  ALHyde  TMKleinman  JEFreed  WJ Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia.  Mol Psychiatry 1999;4 (5) 467- 475PubMedGoogle Scholar
66.
Baysal  BEWillett-Brozick  JEBadner  JACorona  WFerrell  RENimgaonkar  VLDetera-Wadleigh  SD A mannosyltransferase gene at 11q23 is disrupted by a translocation breakpoint that co-segregates with bipolar affective disorder in a small family.  Neurogenetics 2002;4 (1) 43- 53PubMedGoogle Scholar
67.
Arai  MYamada  KToyota  TObata  NHaga  SYoshida  YNakamura  KMinabe  YUjike  HSora  IIkeda  KMori  NYoshikawa  TItokawa  M Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia.  Biol Psychiatry 2006;59 (7) 652- 659PubMedGoogle Scholar
68.
Kitagawa  HPaulson  JC Differential expression of five sialyltransferase genes in human tissues.  J Biol Chem 1994;269 (27) 17872- 17878PubMedGoogle Scholar
69.
Murtra  PSheasby  AMHunt  SPDe Felipe  C Rewarding effects of opiates are absent in mice lacking the receptor for substance P.  Nature 2000;405 (6783) 180- 183PubMedGoogle Scholar
70.
Burnet  PWHarrison  PJ Substance P (NK1) receptors in the cingulate cortex in unipolar and bipolar mood disorder and schizophrenia.  Biol Psychiatry 2000;47 (1) 80- 83PubMedGoogle Scholar
71.
van der Hart  MGde Biurrun  GCzeh  BRupniak  NMden Boer  JAFuchs  E Chronic psychosocial stress in tree shrews: effect of the substance P (NK1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters.  Psychopharmacology (Berl) 2005;181 (2) 207- 216PubMedGoogle Scholar
72.
Kramer  MSCutler  NFeighner  JShrivastava  RCarman  JSramek  JJReines  SALiu  GSnavely  DWyatt-Knowles  EHale  JJMills  SGMacCoss  MSwain  CJHarrison  THill  RGHefti  FScolnick  EMCascieri  MAChicchi  GGSadowski  SWilliams  ARHewson  LSmith  DCarlson  EJHargreaves  RJRupniak  NM Distinct mechanism for antidepressant activity by blockade of central substance P receptors.  Science 1998;281 (5383) 1640- 1645PubMedGoogle Scholar
73.
Keller  MMontgomery  SBall  WMorrison  MSnavely  DLiu  GHargreaves  RHietala  JLines  CBeebe  KReines  S Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder.  Biol Psychiatry 2006;59 (3) 216- 223PubMedGoogle Scholar
74.
Sun  XYoung  LTWang  JFGrof  PTurecki  GRouleau  GAAlda  M Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder.  Neuropsychopharmacology 2004;29 (4) 799- 804PubMedGoogle Scholar
75.
Mendlewicz  JOswald  PClaes  SMassat  ISouery  DVan Broeckhoven  CDel-Favero  J Patient-control association study of substance P-related genes in unipolar and bipolar affective disorders.  Int J Neuropsychopharmacol 2005;8 (4) 505- 513PubMedGoogle Scholar
76.
Lewis  CMLevinson  DFWise  LHDeLisi  LEStraub  REHovatta  IWilliams  NMSchwab  SGPulver  AEFaraone  SVBrzustowicz  LMKaufmann  CAGarver  DLGurling  HMLindholm  ECoon  HMoises  HWByerley  WShaw  SHMesen  ASherrington  RO’Neill  FAWalsh  DKendler  KSEkelund  JPaunio  TLönnqvist  JPeltonen  LO’Donovan  MCOwen  MJWildenauer  DBMaier  WNestadt  GBlouin  JLAntonarakis  SEMowry  BJSilverman  JMCrowe  RRCloninger  CRTsuang  MTMalaspina  DHarkavy-Friedman  JMSvrakic  DMBassett  ASHolcomb  JKalsi  GMcQuillin  ABrynjolfson  JSigmundsson  TPetursson  HJazin  EZoëga  THelgason  T Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia.  Am J Hum Genet 2003;73 (1) 34- 48PubMedGoogle Scholar
77.
Sklar  PPato  MTKirby  APetryshen  TLMedeiros  HCarvalho  CMacedo  ADourado  ACoelho  IValente  JSoares  MJFerreira  CPLei  MVerner  AHudson  TJMorley  CPKennedy  JLAzevedo  MHLander  EDaly  MJPato  CN Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis.  Mol Psychiatry 2004;9 (2) 213- 218PubMedGoogle Scholar
78.
Herzberg  IJasinska  AGarcia  JJawaheer  DService  SKremeyer  BDuque  CParra  MVVega  JOrtiz  DCarvajal  LPolanco  GRestrepo  GJLópez  CPalacio  CLevinson  MAldana  IMathews  CDavanzo  PMolina  JFournier  EBejarano  JRamírez  MOrtiz  CAAraya  XSabatti  CReus  VMacaya  GBedoya  GOspina  JFreimer  NRuiz-Linares  A Convergent linkage evidence from two Latin-American population isolates supports the presence of a susceptibility locus for bipolar disorder in 5q31-34.  Hum Mol Genet 2006;15 (21) 3146- 3153PubMedGoogle Scholar
79.
Squires  RFLajtha  ASaederup  EPalkovits  M Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses?  Neurochem Res 1993;18 (2) 219- 223PubMedGoogle Scholar
80.
Lewis  DA GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia.  Brain Res Brain Res Rev 2000;31 (2-3) 270- 276PubMedGoogle Scholar
81.
Lewis  DAVolk  DWHashimoto  T Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction.  Psychopharmacology (Berl) 2004;174 (1) 143- 150PubMedGoogle Scholar
82.
Akbarian  SHuntsman  MMKim  JJTafazzoli  APotkin  SGBunney  WE  JrJones  EG GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls.  Cereb Cortex 1995;5 (6) 550- 560PubMedGoogle Scholar
83.
Huntsman  MMTran  BVPotkin  SGBunney  WE  JrJones  EG Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics.  Proc Natl Acad Sci U S A 1998;95 (25) 15066- 15071PubMedGoogle Scholar
84.
Ohnuma  TAugood  SJArai  HMcKenna  PJEmson  PC Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression.  Neuroscience 1999;93 (2) 441- 448PubMedGoogle Scholar
85.
Hashimoto  TVolk  DWEggan  SMMirnics  KPierri  JNSun  ZSampson  ARLewis  DA Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.  J Neurosci 2003;23 (15) 6315- 6326PubMedGoogle Scholar
86.
Choudary  PVMolnar  MEvans  SJTomita  HLi  JZVawter  MPMyers  RMBunney  WE  JrAkil  HWatson  SJJones  EG Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.  Proc Natl Acad Sci U S A 2005;102 (43) 15653- 15658PubMedGoogle Scholar
87.
Torrey  EFBarci  BMWebster  MJBartko  JJMeador-Woodruff  JHKnable  MB Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.  Biol Psychiatry 2005;57 (3) 252- 260PubMedGoogle Scholar
88.
Ishikawa  MMizukami  KIwakiri  MHidaka  SAsada  T Immunohistochemical and immunoblot study of GABAA α1 and β2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.  Neurosci Res 2004;50 (1) 77- 84PubMedGoogle Scholar
89.
Dean  BScarr  EMcLeod  M Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder.  Brain Res Mol Brain Res 2005;138 (2) 145- 155PubMedGoogle Scholar
90.
Kalkman  HOLoetscher  E GAD67: the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis.  J Neural Transm 2003;110 (7) 803- 812PubMedGoogle Scholar
91.
Laeng  PPitts  RLLemire  ALDrabik  CEWeiner  ATang  HThyagarajan  RMallon  BSAltar  CA The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells.  J Neurochem 2004;91 (1) 238- 251PubMedGoogle Scholar
92.
Lee  SHSohn  JWAhn  SCPark  WSHo  WK Li+ enhances GABAergic inputs to granule cells in the rat hippocampal dentate gyrus.  Neuropharmacology 2004;46 (5) 638- 646PubMedGoogle Scholar
93.
Friedman  SDDager  SRParow  AHirashima  FDemopulos  CStoll  ALLyoo  IKDunner  DLRenshaw  PF Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder.  Biol Psychiatry 2004;56 (5) 340- 348PubMedGoogle Scholar
94.
Curtin  FSchulz  P Clonazepam and lorazepam in acute mania: a Bayesian meta-analysis.  J Affect Disord 2004;78 (3) 201- 208PubMedGoogle Scholar
95.
Simon  NMOtto  MWWisniewski  SRFossey  MSagduyu  KFrank  ESachs  GSNierenberg  AAThase  MEPollack  MH Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Am J Psychiatry 2004;161 (12) 2222- 2229PubMedGoogle Scholar
96.
Millar  JKWilson-Annan  JCAnderson  SChristie  STaylor  MSSemple  CADevon  RSClair  DMMuir  WJBlackwood  DHPorteous  DJ Disruption of two novel genes by a translocation co-segregating with schizophrenia.  Hum Mol Genet 2000;9 (9) 1415- 1423PubMedGoogle Scholar
97.
Ekelund  JHovatta  IParker  APaunio  TVarilo  TMartin  RSuhonen  JEllonen  PChan  GSinsheimer  JSSobel  EJuvonen  HArajärvi  RPartonen  TSuvisaari  JLönnqvist  JMeyer  JPeltonen  L Chromosome 1 loci in Finnish schizophrenia families.  Hum Mol Genet 2001;10 (15) 1611- 1617PubMedGoogle Scholar
98.
Ekelund  JHennah  WHiekkalinna  TParker  AMeyer  JLönnqvist  JPeltonen  L Replication of 1q42 linkage in Finnish schizophrenia pedigrees.  Mol Psychiatry 2004;9 (11) 1037- 1041PubMedGoogle Scholar
99.
Hwu  HGLiu  CMFann  CSOu-Yang  WCLee  SF Linkage of schizophrenia with chromosome 1q loci in Taiwanese families.  Mol Psychiatry 2003;8 (4) 445- 452PubMedGoogle Scholar
100.
Hamshere  MLBennett  PWilliams  NSegurado  RCardno  ANorton  NLambert  DWilliams  HKirov  GCorvin  AHolmans  PJones  LJones  IGill  MO’Donovan  MCOwen  MJCraddock  N Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13.  Arch Gen Psychiatry 2005;62 (10) 1081- 1088PubMedGoogle Scholar
101.
Curtis  DKalsi  GBrynjolfsson  JMcInnis  M Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23-q24, and suggests the presence of additional loci on 1p and 1q.  Psychiatr Genet 2003;13 (2) 77- 84PubMedGoogle Scholar
102.
Detera-Wadleigh  SDBadner  JABerrettini  WHYoshikawa  TGoldin  LRTurner  GRollins  DYMoses  TSanders  ARKarkera  JDEsterling  LEZeng  JFerraro  TNGuroff  JJKazuba  DMaxwell  MENurnberger  JI  JrGershon  ES A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2.  Proc Natl Acad Sci U S A 1999;96 (10) 5604- 5609PubMedGoogle Scholar
103.
Macgregor  SVisscher  PMKnott  SAThomson  PPorteous  DJMillar  JKDevon  RSBlackwood  DMuir  WJ A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42.  Mol Psychiatry 2004;9 (12) 1083- 1090PubMedGoogle Scholar
104.
Hennah  WVarilo  TKestilä  MPaunio  TArajärvi  RHaukka  JParker  AMartin  RLevitzky  SPartonen  TMeyer  JLönnqvist  JPeltonen  LEkelund  J Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects.  Hum Mol Genet 2003;12 (23) 3151- 3159PubMedGoogle Scholar
105.
Mutsuddi  MMorris  DWWaggoner  SGDaly  MJScolnick  EMSklar  P Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia.  Am J Hum Genet 2006;79 (5) 903- 909PubMedGoogle Scholar
106.
Florez  JCBurtt  Nde Bakker  PIAlmgren  PTuomi  THolmkvist  JGaudet  DHudson  TJSchaffner  SFDaly  MJHirschhorn  JNGroop  LAltshuler  D Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.  Diabetes 2004;53 (5) 1360- 1368PubMedGoogle Scholar
107.
Alda  M Pharmacogenetics of lithium response in bipolar disorder.  J Psychiatry Neurosci 1999;24 (2) 154- 158PubMedGoogle Scholar
108.
Grof  PDuffy  ACavazzoni  PGrof  EGarnham  JMacDougall  MO’Donovan  CAlda  M Is response to prophylactic lithium a familial trait?  J Clin Psychiatry 2002;63 (10) 942- 947PubMedGoogle Scholar
109.
Sautter  FGarver  D Familial differences in lithium responsive versus lithium nonresponsive psychoses.  J Psychiatr Res 1985;19 (1) 1- 8PubMedGoogle Scholar
110.
Emamian  ESHall  DBirnbaum  MJKarayiorgou  MGogos  JA Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia.  Nat Genet 2004;36 (2) 131- 137PubMedGoogle Scholar
111.
Jacinto  EFacchinetti  VLiu  DSoto  NWei  SJung  SYHuang  QQin  JSu  B SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.  Cell 2006;127 (1) 125- 137PubMedGoogle Scholar
112.
Baum  AEAkula  NCabanero  MCardona  ICorona  WKlemens  BSchulze  TGCichon  SRietschel  MNöthen  MMGeorgi  ASchumacher  JSchwarz  MAbou Jamra  RHöfels  SPropping  PSatagopan  JDetera-Wadleigh  SDHardy  JMcMahon  FJ A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder [published online ahead of print May 8, 2007].  Mol Psychiatry 2007;10.1038/sj.mp.4002012Google Scholar
113.
Cassidy  FRoche  SClaffey  EMcKeon  P First family-based test for association of neuregulin with bipolar affective disorder.  Mol Psychiatry 2006;11 (8) 706- 707PubMedGoogle Scholar
114.
Breen  GPrata  DOsborne  SMunro  JSinclair  MLi  TStaddon  SDempster  DSainz  RArroyo  BKerwin  RWSt Clair  DCollier  D Association of the dysbindin gene with bipolar affective disorder.  Am J Psychiatry 2006;163 (9) 1636- 1638PubMedGoogle Scholar
115.
Raybould  RGreen  EKMacGregor  SGordon-Smith  KHeron  JHyde  SCaesar  SNikolov  IWilliams  NJones  LO’Donovan  MCOwen  MJJones  IKirov  GCraddock  N Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1).  Biol Psychiatry 2005;57 (7) 696- 701PubMedGoogle Scholar
116.
Sklar  PGabriel  SBMcInnis  MGBennett  PLim  YMTsan  GSchaffner  SKirov  GJones  IOwen  MCraddock  NDePaulo  JRLander  ES Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus.  Mol Psychiatry 2002;7 (6) 579- 593PubMedGoogle Scholar
117.
Neves-Pereira  MMundo  EMuglia  PKing  NMacciardi  FKennedy  JL The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study.  Am J Hum Genet 2002;71 (3) 651- 655PubMedGoogle Scholar
118.
Furlong  RAHo  LWalsh  CRubinsztein  JSJain  SPaykel  ESEaston  DFRubinsztein  DC Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders.  Am J Med Genet 1998;81 (1) 58- 63PubMedGoogle Scholar
119.
Mynett-Johnson  LKealey  CClaffey  ECurtis  DBouchier-Hayes  LPowell  CMcKeon  P Multimarker haplotypes within the serotonin transporter gene suggest evidence of an association with bipolar disorder.  Am J Med Genet 2000;96 (6) 845- 849PubMedGoogle Scholar
120.
Lasky-Su  JAFaraone  SVGlatt  SJTsuang  MT Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders.  Am J Med Genet B Neuropsychiatr Genet 2005;133 (1) 110- 115PubMedGoogle Scholar
121.
Greenwood  TASchork  NJEskin  EKelsoe  JR Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples.  Mol Psychiatry 2006;11 (2) 125- 133PubMedGoogle Scholar
×